IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v257y2020ics0306261919316897.html
   My bibliography  Save this article

Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries

Author

Listed:
  • Yang, Yang
  • Yuan, Wei
  • Zhang, Xiaoqing
  • Yuan, Yuhang
  • Wang, Chun
  • Ye, Yintong
  • Huang, Yao
  • Qiu, Zhiqiang
  • Tang, Yong

Abstract

Rechargeable lithium-ion battery (LIB) is a kind of electrochemical energy storage and conversion device with both high energy and power densities. The real application of various advanced LIBs (e.g., three-dimensional (3D) LIBs, flexible, wearable or customized LIBs) and integrated manufacturing of LIBs or LIB-powered devices depend on specific fabrication processes. However, conventional commercialized manufacturing techniques with sophisticated and expensive processes are far away from the facile, cost-effective and free-form fabrication demands. Additive manufacturing, usually known as 3D printing, is an ideal solution. This technology enables practical freedom of fabricating objects with well-controlled complex geometry through a layer-by-layer deposition process, independent of any templates. Almost all kinds of materials, from nanoscale to macroscale, can be used for 3D printing. In this work, we review the application advance of 3D printing in the field of LIBs. The fundamental concepts of representative 3D printing techniques are presented first, including the operation principles, requirements for raw printing materials and manufacturing accuracy of different 3D printing techniques. Then the applications are discussed at both component and package levels. Finally, the methodology, challenges and future perspectives of exploiting 3D printing for real applications in LIBs are presented. All the applications of 3D printing discussed herein can provide us with right directions of better energy conservation and conversion.

Suggested Citation

  • Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Yuan, Yuhang & Wang, Chun & Ye, Yintong & Huang, Yao & Qiu, Zhiqiang & Tang, Yong, 2020. "Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries," Applied Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316897
    DOI: 10.1016/j.apenergy.2019.114002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919316897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noelle, Daniel J. & Wang, Meng & Le, Anh V. & Shi, Yang & Qiao, Yu, 2018. "Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting," Applied Energy, Elsevier, vol. 212(C), pages 796-808.
    2. Zheng Chen & Po-Chun Hsu & Jeffrey Lopez & Yuzhang Li & John W. F. To & Nan Liu & Chao Wang & Sean C. Andrews & Jia Liu & Yi Cui & Zhenan Bao, 2016. "Fast and reversible thermoresponsive polymer switching materials for safer batteries," Nature Energy, Nature, vol. 1(1), pages 1-2, January.
    3. Said, Ahmed O. & Lee, Christopher & Stoliarov, Stanislav I. & Marshall, André W., 2019. "Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays," Applied Energy, Elsevier, vol. 248(C), pages 415-428.
    4. Cheng Zhu & T. Yong-Jin Han & Eric B. Duoss & Alexandra M. Golobic & Joshua D. Kuntz & Christopher M. Spadaccini & Marcus A. Worsley, 2015. "Highly compressible 3D periodic graphene aerogel microlattices," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    5. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    6. Donal P. Finegan & Mario Scheel & James B. Robinson & Bernhard Tjaden & Ian Hunt & Thomas J. Mason & Jason Millichamp & Marco Di Michiel & Gregory J. Offer & Gareth Hinds & Dan J.L. Brett & Paul R. Sh, 2015. "In-operando high-speed tomography of lithium-ion batteries during thermal runaway," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    7. Klein, M. & Tong, S. & Park, J.W., 2016. "In-plane nonuniform temperature effects on the performance of a large-format lithium-ion pouch cell," Applied Energy, Elsevier, vol. 165(C), pages 639-647.
    8. Wang, Jian & Kong, Hui & Xu, Yaobin & Wu, Jinsong, 2019. "Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling," Applied Energy, Elsevier, vol. 241(C), pages 433-443.
    9. Wang, Mingyue & Huang, Ying & Wang, Ke & Zhu, Yade & Zhang, Na & Zhang, Hongming & Li, Suping & Feng, Zhenhe, 2018. "PVD synthesis of binder-free silicon and carbon coated 3D α-Fe2O3 nanorods hybrid films as high-capacity and long-life anode for flexible lithium-ion batteries," Energy, Elsevier, vol. 164(C), pages 1021-1029.
    10. Ping, Ping & Wang, Qingsong & Chung, Youngmann & Wen, Jennifer, 2017. "Modelling electro-thermal response of lithium-ion batteries from normal to abuse conditions," Applied Energy, Elsevier, vol. 205(C), pages 1327-1344.
    11. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    12. De Vita, Armando & Maheshwari, Arpit & Destro, Matteo & Santarelli, Massimo & Carello, Massimiliana, 2017. "Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications," Applied Energy, Elsevier, vol. 206(C), pages 101-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Zhiliang & Wang, Huaixing & Yang, Tongguang & Chen, Zeye & Li, Hangyang & Chen, Jie & Wu, Shengben, 2023. "An efficient multi-state evaluation approach for lithium-ion pouch cells under dynamic conditions in pressure/current/temperature," Applied Energy, Elsevier, vol. 340(C).
    2. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Ke, Yuzhi & Qiu, Zhiqiang & Luo, Jian & Tang, Yong & Wang, Chun & Yuan, Yuhang & Huang, Yao, 2020. "A review on structuralized current collectors for high-performance lithium-ion battery anodes," Applied Energy, Elsevier, vol. 276(C).
    3. Ma, Xurui & Jing, Zefeng & Feng, Chenchen & Qiao, Mingzheng & Xu, Donghai, 2023. "Research and development progress of porous foam-based electrodes in advanced electrochemical energy storage devices: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Zonghou & Shen, Ting & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode," Energy, Elsevier, vol. 239(PA).
    2. Liu, Tong & Tao, Changfa & Wang, Xishi, 2020. "Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules," Applied Energy, Elsevier, vol. 267(C).
    3. Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
    4. Ding, Xiaofeng & Zhang, Donghuai & Cheng, Jiawei & Wang, Binbin & Luk, Patrick Chi Kwong, 2019. "An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles," Applied Energy, Elsevier, vol. 254(C).
    5. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Xu, Xinhai & Li, Wenzheng & Xu, Ben & Qin, Jiang, 2019. "Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions," Applied Energy, Elsevier, vol. 250(C), pages 404-412.
    7. Li, Junqiu & Sun, Danni & Jin, Xin & Shi, Wentong & Sun, Chao, 2019. "Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation," Applied Energy, Elsevier, vol. 254(C).
    8. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    9. Wang, Yu & Ren, Dongsheng & Feng, Xuning & Wang, Li & Ouyang, Minggao, 2022. "Thermal runaway modeling of large format high-nickel/silicon-graphite lithium-ion batteries based on reaction sequence and kinetics," Applied Energy, Elsevier, vol. 306(PA).
    10. Huang, Zonghou & Zhao, Chunpeng & Li, Huang & Peng, Wen & Zhang, Zheng & Wang, Qingsong, 2020. "Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes," Energy, Elsevier, vol. 205(C).
    11. Chen, Jie & Ren, Dongsheng & Hsu, Hungjen & Wang, Li & He, Xiangming & Zhang, Caiping & Feng, Xuning & Ouyang, Minggao, 2021. "Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model," Applied Energy, Elsevier, vol. 295(C).
    12. Huang, Zonghou & Liu, Jialong & Zhai, Hongju & Wang, Qingsong, 2021. "Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions," Energy, Elsevier, vol. 233(C).
    13. Said, Ahmed O. & Lee, Christopher & Stoliarov, Stanislav I. & Marshall, André W., 2019. "Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays," Applied Energy, Elsevier, vol. 248(C), pages 415-428.
    14. Xinlei Shi & Xiangqian Fan & Yinbo Zhu & Yang Liu & Peiqi Wu & Renhui Jiang & Bao Wu & Heng-An Wu & He Zheng & Jianbo Wang & Xinyi Ji & Yongsheng Chen & Jiajie Liang, 2022. "Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    16. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    17. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Lin, Yuan-Qing & Wu, Chun-Mei & Li, You-Rong, 2023. "Experimental investigation on the effect of vapor environment on the pattern evolutions during sessile water droplet evaporation at low pressures," Applied Energy, Elsevier, vol. 331(C).
    19. Yang, Ruixin & Xiong, Rui & Ma, Suxiao & Lin, Xinfan, 2020. "Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks," Applied Energy, Elsevier, vol. 260(C).
    20. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.