IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v173y2023ics1364032122009923.html
   My bibliography  Save this article

Research and development progress of porous foam-based electrodes in advanced electrochemical energy storage devices: A critical review

Author

Listed:
  • Ma, Xurui
  • Jing, Zefeng
  • Feng, Chenchen
  • Qiao, Mingzheng
  • Xu, Donghai

Abstract

Foam structure is a three-dimensional (3D) porous skeleton, which has been widely studied in the field of electrochemical energy storage due to its excellent structural properties, such as high specific surface area, suitable pore size distribution, fast ion transport channels and good stability. The special structure of foam improves the synergy between electroactive and substrate materials: the large specific area provides more growth sites, increasing the loading of active material; the interconnected network framework greatly shortens the transport path of electrolyte ions; the 3D pore space relieves stress effect from volume expansion of active materials. Due to these advantages, the prepared energy storage device has high energy/power density and good cycle stability. In this review, we summarize the preparation methods and structural properties of the foam-based electrode materials, such as metal foam, carbon foam, polymer foam and so on. Subsequently, we briefly introduce the important applications of foam-based electrodes in the related energy devices and other fields, such as supercapacitors, rechargeable batteries. Finally, based on these practical applications, we analyze the future development of the foam-based electrode materials.

Suggested Citation

  • Ma, Xurui & Jing, Zefeng & Feng, Chenchen & Qiao, Mingzheng & Xu, Donghai, 2023. "Research and development progress of porous foam-based electrodes in advanced electrochemical energy storage devices: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009923
    DOI: 10.1016/j.rser.2022.113111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122009923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.113111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castro-Gutiérrez, J. & Díez, N. & Sevilla, M. & Izquierdo, M.T. & Celzard, A. & Fierro, V., 2021. "Model carbon materials derived from tannin to assess the importance of pore connectivity in supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Yuan, Yuhang & Wang, Chun & Ye, Yintong & Huang, Yao & Qiu, Zhiqiang & Tang, Yong, 2020. "Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries," Applied Energy, Elsevier, vol. 257(C).
    4. Ding, Yin & Mu, Daobin & Wu, Borong & Wang, Rui & Zhao, Zhikun & Wu, Feng, 2017. "Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles," Applied Energy, Elsevier, vol. 195(C), pages 586-599.
    5. Tan, Weng Cheong & Saw, Lip Huat & Thiam, Hui San & Xuan, Jin & Cai, Zuansi & Yew, Ming Chian, 2018. "Overview of porous media/metal foam application in fuel cells and solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 181-197.
    6. Zhang, Lei & Hu, Xiaosong & Wang, Zhenpo & Ruan, Jiageng & Ma, Chengbin & Song, Ziyou & Dorrell, David G. & Pecht, Michael G., 2021. "Hybrid electrochemical energy storage systems: An overview for smart grid and electrified vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Gou, Guangjun & Huang, Fei & Jiang, Man & Li, Jinyang & Zhou, Zuowan, 2020. "Hierarchical porous carbon electrode materials for supercapacitor developed from wheat straw cellulosic foam," Renewable Energy, Elsevier, vol. 149(C), pages 208-216.
    8. Zhang, Hongyun & Wang, Lingling & Xi, Shaobo & Xie, Huaqing & Yu, Wei, 2021. "3D porous copper foam-based shape-stabilized composite phase change materials for high photothermal conversion, thermal conductivity and storage," Renewable Energy, Elsevier, vol. 175(C), pages 307-317.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Ke, Yuzhi & Qiu, Zhiqiang & Luo, Jian & Tang, Yong & Wang, Chun & Yuan, Yuhang & Huang, Yao, 2020. "A review on structuralized current collectors for high-performance lithium-ion battery anodes," Applied Energy, Elsevier, vol. 276(C).
    2. Zhang, Pengfei & Wang, Yilin & Qiu, Yu & Yan, Hongjie & Wang, Zhaolong & Li, Qing, 2024. "Novel composite phase change materials supported by oriented carbon fibers for solar thermal energy conversion and storage," Applied Energy, Elsevier, vol. 358(C).
    3. Juntao Wei & Jiawei Sun & Deliang Xu & Lei Shi & Miao Wang & Bin Li & Xudong Song & Shu Zhang & Hong Zhang, 2023. "Preparation and Electrochemical Performance of Bio-Oil-Derived Hydrochar as a Supercapacitor Electrode Material," IJERPH, MDPI, vol. 20(2), pages 1-12, January.
    4. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Liu, Zhanglin & Wan, Xue & Wang, Qing & Tian, Dong & Hu, Jinguang & Huang, Mei & Shen, Fei & Zeng, Yongmei, 2021. "Performances of a multi-product strategy for bioethanol, lignin, and ultra-high surface area carbon from lignocellulose by PHP (phosphoric acid plus hydrogen peroxide) pretreatment platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Liu, Shan & Yan, Jie & Yan, Yamin & Zhang, Haoran & Zhang, Jing & Liu, Yongqian & Han, Shuang, 2024. "Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate," Applied Energy, Elsevier, vol. 357(C).
    7. Gowthami, D. & Sharma, R.K., 2023. "Influence of Hydrophilic and Hydrophobic modification of the porous matrix on the thermal performance of form stable phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Xu, Xiaodong & Sielicki, Krzysztof & Min, Jiakang & Li, Jiaxin & Hao, Chuncheng & Wen, Xin & Chen, Xuecheng & Mijowska, Ewa, 2022. "One-step converting biowaste wolfberry fruits into hierarchical porous carbon and its application for high-performance supercapacitors," Renewable Energy, Elsevier, vol. 185(C), pages 187-195.
    9. Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.
    10. Fan, Ruijin & Wan, Minghan & Zhou, Tian & Zheng, Nianben & Sun, Zhiqiang, 2024. "Graphene-enhanced phase change material systems: Minimizing optical and thermal losses for solar thermal applications," Energy, Elsevier, vol. 289(C).
    11. Li, Dong & Guo, Yanchuan & Li, Yi & Liu, Zhengang & Chen, Zeliang, 2022. "Waste-biomass tar functionalized carbon spheres with N/P Co-doping and hierarchical pores as sustainable low-cost energy storage materials," Renewable Energy, Elsevier, vol. 188(C), pages 61-69.
    12. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    14. Fan, Huailin & Zhou, Shuxin & Wei, Qinghong & Hu, Xun, 2022. "Honeycomb-like carbon for electrochemical energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Wilberforce, Tabbi & Abdelkareem, Mohammad Ali & Elsaid, Khaled & Olabi, A.G. & Sayed, Enas Taha, 2022. "Role of carbon-based nanomaterials in improving the performance of microbial fuel cells," Energy, Elsevier, vol. 240(C).
    16. Hu, Lin & Tian, Qingtao & Zou, Changfu & Huang, Jing & Ye, Yao & Wu, Xianhui, 2022. "A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Wang, P. & Li, J.B. & Xu, R.N. & Jiang, P.X., 2021. "Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber," Energy, Elsevier, vol. 225(C).
    18. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    19. Xin Zhang & Shi Liu & Yuqi Zhao & Haicun Yang & Jinchun Li, 2023. "Honeycomb-like Hierarchical Porous Carbon from Lignosulphonate by Enzymatic Hydrolysis and Alkali Activation for High-Performance Supercapacitors," Energies, MDPI, vol. 16(9), pages 1-17, April.
    20. Shi, Xingping & He, Qing & Liu, Yixue & An, Xugang & Zhang, Qianxu & Du, Dongmei, 2024. "Thermodynamic and techno-economic analysis of a novel compressed air energy storage system coupled with coal-fired power unit," Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.