IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v256y2019ics0306261919314977.html
   My bibliography  Save this article

Technical, economic, and environmental assessment of liquid fuel production on aircraft carriers

Author

Listed:
  • Comidy, Liam J.F.
  • Staples, Mark D.
  • Barrett, Steven R.H.

Abstract

The supply chain to deliver fuels to aircraft carriers is complex, dangerous, and expensive, and one option to mitigate these risks is to produce fuel at sea. This work quantifies the costs, climate impacts, and physical characteristics of three technology pathways for fuel production onboard aircraft carriers: alkaline electrolysis and reverse water gas shift (AE + RWGS); solid oxide electrolysis and RWGS (SOEC + RWGS); and co-electrolysis of steam and CO2. Two design scenarios are evaluated: a small, infrequently operating plant using excess nuclear power (Scenario A); and a large, frequently operating plant with dedicated nuclear capacity (Scenario B). Fuel production costs are quantified using a Monte Carlo techno-economic analysis, ranging from 1.91 to 4.49 and 3.25–4.23 $/L in Scenarios A and B, respectively. The lowest cost technology pathway is AE + RWGS. All technology pathways are shown to offer reductions in life cycle greenhouse gas emissions of 82–86% relative to petroleum JP-5. In Scenario B, the plant volume and weight are estimated at 50–67% and 432% of current aircraft carrier designs, respectively, highlighting challenges for technical feasibility. Furthermore, increasing plant production capacity and capacity factor is shown to reduce the unit cost of fuel production, but that this is largely offset by the additional costs of dedicated nuclear capacity required at larger scales. The results indicate that fuel production on an aircraft carrier may be technically feasible, cost competitive, and environmentally beneficial relative to the petroleum fuels currently in use. However, research to further reduce system cost, weight, and volume, including experimental validation, are still required.

Suggested Citation

  • Comidy, Liam J.F. & Staples, Mark D. & Barrett, Steven R.H., 2019. "Technical, economic, and environmental assessment of liquid fuel production on aircraft carriers," Applied Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919314977
    DOI: 10.1016/j.apenergy.2019.113810
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919314977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2017. "Design and evaluation of a Fischer-Tropsch process for the production of waxes from biogas," Energy, Elsevier, vol. 132(C), pages 370-381.
    2. Willauer, Heather D. & Hardy, Dennis R. & Moyer, Seth A. & DiMascio, Felice & Williams, Frederick W. & Drab, David M., 2015. "An economic basis for littoral land-based production of low carbon fuel from nuclear electricity and seawater for naval or commercial use," Energy Policy, Elsevier, vol. 81(C), pages 67-75.
    3. Carless, Travis S. & Griffin, W. Michael & Fischbeck, Paul S., 2016. "The environmental competitiveness of small modular reactors: A life cycle study," Energy, Elsevier, vol. 114(C), pages 84-99.
    4. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marchese, Marco & Chesta, Simone & Santarelli, Massimo & Lanzini, Andrea, 2021. "Techno-economic feasibility of a biomass-to-X plant: Fischer-Tropsch wax synthesis from digestate gasification," Energy, Elsevier, vol. 228(C).
    2. Ouyang, Tiancheng & Zhao, Zhongkai & Wang, Zhiping & Zhang, Mingliang & Liu, Benlong, 2021. "A high-efficiency scheme for waste heat harvesting of solid oxide fuel cell integrated homogeneous charge compression ignition engine," Energy, Elsevier, vol. 229(C).
    3. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2024. "The role of direct air carbon capture in decarbonising aviation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Ouyang, Tiancheng & Zhao, Zhongkai & Zhang, Mingliang & Xie, Shutao & Wang, Zhiping, 2022. "A micro off-grid power solution for solid oxide fuel cell waste heat reusing enabled peak load shifting by integrating compressed-air energy storage," Applied Energy, Elsevier, vol. 323(C).
    5. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2022. "What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Morenike Ajike Peters & Carine Tondo Alves & Jude Azubuike Onwudili, 2023. "A Review of Current and Emerging Production Technologies for Biomass-Derived Sustainable Aviation Fuels," Energies, MDPI, vol. 16(16), pages 1-40, August.
    3. Black, Geoffrey A. & Aydogan, Fatih & Koerner, Cassandra L., 2019. "Economic viability of light water small modular nuclear reactors: General methodology and vendor data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 248-258.
    4. Carless, Travis S. & Talabi, Sola M. & Fischbeck, Paul S., 2019. "Risk and regulatory considerations for small modular reactor emergency planning zones based on passive decontamination potential," Energy, Elsevier, vol. 167(C), pages 740-756.
    5. Klein, Bruno Colling & Chagas, Mateus Ferreira & Junqueira, Tassia Lopes & Rezende, Mylene Cristina Alves Ferreira & Cardoso, Terezinha de Fátima & Cavalett, Otavio & Bonomi, Antonio, 2018. "Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries," Applied Energy, Elsevier, vol. 209(C), pages 290-305.
    6. Chen, Jingwei & Wang, Chenxi & Shang, Wenxue & Bai, Yu & Wu, Xiaomin, 2023. "Study on the mechanisms of hydrogen production from alkali lignin gasification in supercritical water by ReaxFF molecular dynamics simulation," Energy, Elsevier, vol. 278(PA).
    7. Wang, Wei-Cheng & Liu, Yu-Cheng & Nugroho, Rusdan Aditya Aji, 2022. "Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis," Energy, Elsevier, vol. 239(PA).
    8. Samuele Lo Piano & Lorenzo Benini, 2022. "A critical perspective on uncertainty appraisal and sensitivity analysis in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 763-781, June.
    9. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    10. Rau, Greg H. & Baird, Jim R., 2018. "Negative-CO2-emissions ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 265-272.
    11. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    12. Pauletto, Gianluca & Galli, Federico & Gaillardet, Alice & Mocellin, Paolo & Patience, Gregory S., 2021. "Techno economic analysis of a micro Gas-to-Liquid unit for associated natural gas conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    14. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2018. "Techno-economic analysis of a co-electrolysis-based synthesis process for the production of hydrocarbons," Applied Energy, Elsevier, vol. 215(C), pages 309-320.
    15. Zhang, Xuesong & Lei, Hanwu & Zhu, Lei & Qian, Moriko & Zhu, Xiaolu & Wu, Joan & Chen, Shulin, 2016. "Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions," Applied Energy, Elsevier, vol. 173(C), pages 418-430.
    16. Galloni, E. & Scala, F. & Fontana, G., 2019. "Influence of fuel bio-alcohol content on the performance of a turbo-charged, PFI, spark-ignition engine," Energy, Elsevier, vol. 170(C), pages 85-92.
    17. Niasar, Malek Shariati & Ghorbani, Bahram & Amidpour, Majid & Hayati, Reza, 2019. "Developing a hybrid integrated structure of natural gas conversion to liquid fuels, absorption refrigeration cycle and multi effect desalination (exergy and economic analysis)," Energy, Elsevier, vol. 189(C).
    18. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo & Soares, Isabel, 2020. "Probabilistic multicriteria environmental assessment of power plants: A global approach," Applied Energy, Elsevier, vol. 260(C).
    19. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    20. Kroyan, Yuri & Wojcieszyk, Michał & Kaario, Ossi & Larmi, Martti, 2022. "Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919314977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.