IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v167y2019icp740-756.html
   My bibliography  Save this article

Risk and regulatory considerations for small modular reactor emergency planning zones based on passive decontamination potential

Author

Listed:
  • Carless, Travis S.
  • Talabi, Sola M.
  • Fischbeck, Paul S.

Abstract

It has been argued that risk and performance-based approaches to licensing would be appropriate for Small Modular Reactors (SMRs) because their risk profiles differ from large-scale reactors. This is based on several factors including their limited electrical capacity of 300 MW, the below grade reactor vessel, and passive safety features. One design feature that can significantly reduce accident severity is the larger lateral surface area-to-volume (A/V) ratio of SMRs. Following a nuclear accident, this larger A/V ratio can increase the removal of radioactive particles due to natural phenomena compared to large light water reactors (LWRs). To quantify the improvements in safety, this work estimates the airborne radioactivity within containment and environmental dose exposure in a post-accident scenario for an advanced Generation III+ LWR (AP1000), a representative Generation II LWR (Surry), and an SMR. On average, the AP1000, Surry, and SMR produces 139, 153, and 104 curies/ft3 (182, 200, and 136 terabecquerels/m3) 75 min after a Loss-of-coolant-accident (LOCA). Using Monte Carlo simulations, the SMR produces less radioactivity per volume in containment than the AP1000 and Surry 84% and 96% of the time, respectively. On average, the AP1000, Surry, and SMR produces 84, 106, and 7 thousand curies/MWth (3.1, 3.9, and 2.5 petabecquerels/MWth) 75 min after a LOCA. The larger A/V ratio of the SMR plays a substantial role in reducing the radioactivity. While it is expected that the SMR would have a lower levels of radioactivity compared to the AP1000 and Surry, the SMR produces less radioactivity after normalizing by thermal reactor power and containment volume. With respect to environmental dose exposure, the US Environmental Protection Agency 1–5 rem (0.01–0.05 sieverts) Protective Action Guide (PAG) limits for whole body exposure is not exceeded at the 10-mile (16.1-km) EPZ using the mean estimates for the AP1000 and Surry. The iPWR does not exceed the 1 rem (0.01 sieverts) lower PAG limit for whole body exposure at the 5-mile (8-km) EPZ using the mean value. These findings can be used in conjunction with the improved analytical methods, found in the SOARCA study, to provide accurate and realistic estimates for exposure. This will help create a pathway to develop a regulatory basis for technology-neutral, risk-based approach to EPZs for iPWRs.

Suggested Citation

  • Carless, Travis S. & Talabi, Sola M. & Fischbeck, Paul S., 2019. "Risk and regulatory considerations for small modular reactor emergency planning zones based on passive decontamination potential," Energy, Elsevier, vol. 167(C), pages 740-756.
  • Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:740-756
    DOI: 10.1016/j.energy.2018.10.173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218321704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rashad, S. M. & Hammad, F. H., 2000. "Nuclear power and the environment: comparative assessment of environmental and health impacts of electricity-generating systems," Applied Energy, Elsevier, vol. 65(1-4), pages 211-229, April.
    2. Carless, Travis S. & Griffin, W. Michael & Fischbeck, Paul S., 2016. "The environmental competitiveness of small modular reactors: A life cycle study," Energy, Elsevier, vol. 114(C), pages 84-99.
    3. Vujić, Jasmina & Bergmann, Ryan M. & Škoda, Radek & Miletić, Marija, 2012. "Small modular reactors: Simpler, safer, cheaper?," Energy, Elsevier, vol. 45(1), pages 288-295.
    4. Rowinski, Marcin Karol & White, Timothy John & Zhao, Jiyun, 2015. "Small and Medium sized Reactors (SMR): A review of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 643-656.
    5. Strupczewski, A., 2003. "Accident risks in nuclear-power plants," Applied Energy, Elsevier, vol. 75(1-2), pages 79-86, May.
    6. Michael J. Ford & Ahmed Abdulla & M. Granger Morgan, 2017. "Evaluating the Cost, Safety, and Proliferation Risks of Small Floating Nuclear Reactors," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2191-2211, November.
    7. Locatelli, Giorgio & Mancini, Mauro & Todeschini, Nicola, 2013. "Generation IV nuclear reactors: Current status and future prospects," Energy Policy, Elsevier, vol. 61(C), pages 1503-1520.
    8. Maïzi, Nadia & Assoumou, Edi, 2014. "Future prospects for nuclear power in France," Applied Energy, Elsevier, vol. 136(C), pages 849-859.
    9. Ramana, M.V. & Hopkins, Laura Berzak & Glaser, Alexander, 2013. "Licensing small modular reactors," Energy, Elsevier, vol. 61(C), pages 555-564.
    10. Rode, David C. & Fischbeck, Paul S. & Páez, Antonio R., 2017. "The retirement cliff: Power plant lives and their policy implications," Energy Policy, Elsevier, vol. 106(C), pages 222-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo L. Vinoya & Aristotle T. Ubando & Alvin B. Culaba & Wei-Hsin Chen, 2023. "State-of-the-Art Review of Small Modular Reactors," Energies, MDPI, vol. 16(7), pages 1-30, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alonso, Gustavo & Bilbao, Sama & Valle, Edmundo del, 2016. "Economic competitiveness of small modular reactors versus coal and combined cycle plants," Energy, Elsevier, vol. 116(P1), pages 867-879.
    2. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    3. Haneklaus, Nils & Qvist, Staffan & Gładysz, Paweł & Bartela, Łukasz, 2023. "Why coal-fired power plants should get nuclear-ready," Energy, Elsevier, vol. 280(C).
    4. Frederik Reitsma & Peter Woods & Martin Fairclough & Yongjin Kim & Harikrishnan Tulsidas & Luis Lopez & Yanhua Zheng & Ahmed Hussein & Gerd Brinkmann & Nils Haneklaus & Anand Rao Kacham & Tumuluri Sre, 2018. "On the Sustainability and Progress of Energy Neutral Mineral Processing," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    5. Zhe Dong & Miao Liu & Di Jiang & Xiaojin Huang & Yajun Zhang & Zuoyi Zhang, 2018. "Automatic Generation Control of Nuclear Heating Reactor Power Plants," Energies, MDPI, vol. 11(10), pages 1-18, October.
    6. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    7. Wang, Qiang & Li, Rongrong & He, Gang, 2018. "Research status of nuclear power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 90-96.
    8. Black, Geoffrey A. & Aydogan, Fatih & Koerner, Cassandra L., 2019. "Economic viability of light water small modular nuclear reactors: General methodology and vendor data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 248-258.
    9. Nian, Victor & Mignacca, Benito & Locatelli, Giorgio, 2022. "Policies toward net-zero: Benchmarking the economic competitiveness of nuclear against wind and solar energy," Applied Energy, Elsevier, vol. 320(C).
    10. Pablo Fernández-Arias & Diego Vergara & Álvaro Antón-Sancho, 2023. "Bibliometric Review and Technical Summary of PWR Small Modular Reactors," Energies, MDPI, vol. 16(13), pages 1-15, July.
    11. Haneklaus, Nils & Schröders, Sarah & Zheng, Yanhua & Allelein, Hans-Josef, 2017. "Economic evaluation of flameless phosphate rock calcination with concentrated solar power and high temperature reactors," Energy, Elsevier, vol. 140(P1), pages 1148-1157.
    12. Iyer, Gokul & Hultman, Nathan & Fetter, Steve & Kim, Son H., 2014. "Implications of small modular reactors for climate change mitigation," Energy Economics, Elsevier, vol. 45(C), pages 144-154.
    13. Zhe Dong, 2016. "Model-Free Coordinated Control for MHTGR-Based Nuclear Steam Supply Systems," Energies, MDPI, vol. 9(1), pages 1-14, January.
    14. Elaheh Shobeiri & Filippo Genco & Daniel Hoornweg & Akira Tokuhiro, 2023. "Small Modular Reactor Deployment and Obstacles to Be Overcome," Energies, MDPI, vol. 16(8), pages 1-19, April.
    15. Carlo L. Vinoya & Aristotle T. Ubando & Alvin B. Culaba & Wei-Hsin Chen, 2023. "State-of-the-Art Review of Small Modular Reactors," Energies, MDPI, vol. 16(7), pages 1-30, April.
    16. Dong, Zhe & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Multi-layer perception based model predictive control for the thermal power of nuclear superheated-steam supply systems," Energy, Elsevier, vol. 151(C), pages 116-125.
    17. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Dynamical modeling and simulation of the six-modular high temperature gas-cooled reactor plant HTR-PM600," Energy, Elsevier, vol. 155(C), pages 971-991.
    18. Mignacca, Benito & Locatelli, Giorgio & Sainati, Tristano, 2020. "Deeds not words: Barriers and remedies for Small Modular nuclear Reactors," Energy, Elsevier, vol. 206(C).
    19. Kone, Aylin Cigdem & Buke, Tayfun, 2007. "An Analytical Network Process (ANP) evaluation of alternative fuels for electricity generation in Turkey," Energy Policy, Elsevier, vol. 35(10), pages 5220-5228, October.
    20. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2017. "Model-free adaptive control law for nuclear superheated-steam supply systems," Energy, Elsevier, vol. 135(C), pages 53-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:167:y:2019:i:c:p:740-756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.