IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p6100-d1221886.html
   My bibliography  Save this article

A Review of Current and Emerging Production Technologies for Biomass-Derived Sustainable Aviation Fuels

Author

Listed:
  • Morenike Ajike Peters

    (Energy & Bioproducts Research Institute, Chemical Engineering & Applied Chemistry, School of Infrastructure & Sustainable Engineering, Aston University, Birmingham B4 7ET, UK)

  • Carine Tondo Alves

    (Energy & Bioproducts Research Institute, Chemical Engineering & Applied Chemistry, School of Infrastructure & Sustainable Engineering, Aston University, Birmingham B4 7ET, UK
    Departamento de Engenharia de Energia, Centro de Ciência e Tecnologia em Energia e Sustentabilidade, Universidade Federal do Recôncavo da Bahia (UFRB), Feira de Santana 44085-132, Brazil)

  • Jude Azubuike Onwudili

    (Energy & Bioproducts Research Institute, Chemical Engineering & Applied Chemistry, School of Infrastructure & Sustainable Engineering, Aston University, Birmingham B4 7ET, UK)

Abstract

The aviation industry is a significant contributor to global carbon dioxide emissions, with over 920 million tonnes per year, and there is a growing need to reduce its environmental impact. The production of biojet fuel from renewable biomass feedstocks presents a promising solution to address this challenge, with the potential to reduce greenhouse gas emissions and dependence on fossil fuels in the aviation sector. This review provides an in-depth discussion of current and emerging biojet fuel conversion technologies, their feasibility, and their sustainability, focusing on the promising conversion pathways: lipids-to-jet, sugar-to-jet, gas-to-jet, alcohol-to-jet, and whole biomass-to-jet. Each technology is discussed in terms of its associated feedstocks, important chemistries, and processing steps, with focus on recent innovations to improve yields of biojet product at the required specifications. In addition, the emerging power-to-liquid technology is briefly introduced. With the integrated biorefinery approach, consideration is given to biomass pretreatment to obtain specific feedstocks for the specific technology to obtain the final product, with the embedded environmental sustainability requirements. In addition, the review highlights the challenges associated with the biojet production technologies, with embedded suggestions of future research directions to advance the development of this important and fast-growing sustainable fuel industry.

Suggested Citation

  • Morenike Ajike Peters & Carine Tondo Alves & Jude Azubuike Onwudili, 2023. "A Review of Current and Emerging Production Technologies for Biomass-Derived Sustainable Aviation Fuels," Energies, MDPI, vol. 16(16), pages 1-40, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6100-:d:1221886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/6100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/6100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prussi, Matteo & Lee, Uisung & Wang, Michael & Malina, Robert & Valin, Hugo & Taheripour, Farzad & Velarde, César & Staples, Mark D. & Lonza, Laura & Hileman, James I., 2021. "CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    4. Zoppi, Giulia & Tito, Edoardo & Bianco, Isabella & Pipitone, Giuseppe & Pirone, Raffaele & Bensaid, Samir, 2023. "Life cycle assessment of the biofuel production from lignocellulosic biomass in a hydrothermal liquefaction – aqueous phase reforming integrated biorefinery," Renewable Energy, Elsevier, vol. 206(C), pages 375-385.
    5. Ahmad Dar, Rouf & Ahmad Dar, Eajaz & Kaur, Ajit & Gupta Phutela, Urmila, 2018. "Sweet sorghum-a promising alternative feedstock for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4070-4090.
    6. Eswaran, Sudha & Subramaniam, Senthil & Geleynse, Scott & Brandt, Kristin & Wolcott, Michael & Zhang, Xiao, 2021. "Techno-economic analysis of catalytic hydrothermolysis pathway for jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Wang, Wei-Cheng, 2019. "Techno-economic analysis for evaluating the potential feedstocks for producing hydro-processed renewable jet fuel in Taiwan," Energy, Elsevier, vol. 179(C), pages 771-783.
    8. Atsonios, Konstantinos & Li, Jun & Inglezakis, Vassilis J., 2023. "Process analysis and comparative assessment of advanced thermochemical pathways for e-kerosene production," Energy, Elsevier, vol. 278(PA).
    9. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Główka & Jan Krzysztof Wójcik & Przemysław Boberski & Piotr Józef Woszczyński & Ewa Sabura, 2024. "Highly Efficient Process for Producing a Jet-A1 Biofuel Component Through Hydroprocessing Soybean Oil over Ni and Pt Catalysts," Energies, MDPI, vol. 17(23), pages 1-21, December.
    2. Sajad Ebrahimi & Joseph Szmerekovsky & Bahareh Golkar & Seyed Ali Haji Esmaeili, 2023. "Designing a Renewable Jet Fuel Supply Chain: Leveraging Incentive Policies to Drive Commercialization and Sustainability," Mathematics, MDPI, vol. 11(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos Detsios & Leda Maragoudaki & Stefano Rebecchi & Koen Quataert & Karel De Winter & Vassilis Stathopoulos & Nikolaos G. Orfanoudakis & Panagiotis Grammelis & Konstantinos Atsonios, 2024. "Techno-Economic Evaluation of Jet Fuel Production via an Alternative Gasification-Driven Biomass-to-Liquid Pathway and Benchmarking with the State-of-the-Art Fischer–Tropsch and Alcohol-to-Jet Concept," Energies, MDPI, vol. 17(7), pages 1-23, April.
    2. Braun, Matthias & Grimme, Wolfgang & Oesingmann, Katrin, 2024. "Pathway to net zero: Reviewing sustainable aviation fuels, environmental impacts and pricing," Journal of Air Transport Management, Elsevier, vol. 117(C).
    3. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Masum, Farhad Hossain & Coppola, Ed & Field, John L. & Geller, Daniel & George, Sheeja & Miller, Jonathan L. & Mulvaney, Michael J. & Nana, Sanjay & Seepaul, Ramdeo & Small, Ian M. & Wright, David & D, 2023. "Supply chain optimization of sustainable aviation fuel from carinata in the Southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    5. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    6. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    7. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    8. Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).
    9. Nair, Purusothmn Nair S Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2022. "Extended graphical approach for the implementation of energy-consuming negative emission technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Seber, Gonca & Escobar, Neus & Valin, Hugo & Malina, Robert, 2022. "Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    12. Oleg Bazaluk & Valerii Havrysh & Mykhailo Fedorchuk & Vitalii Nitsenko, 2021. "Energy Assessment of Sorghum Cultivation in Southern Ukraine," Agriculture, MDPI, vol. 11(8), pages 1-22, July.
    13. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).
    14. Siddiqui, O. & Dincer, I., 2021. "A comparative life cycle assessment of clean aviation fuels," Energy, Elsevier, vol. 234(C).
    15. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    16. Cary, Michael, 2023. "Climate policy boosts trade competitiveness: Evidence from timber trade networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Roksana Muzyka & Szymon Sobek & Mariusz Dudziak & Miloud Ouadi & Marcin Sajdak, 2023. "A Comparative Analysis of Waste Biomass Pyrolysis in Py-GC-MS and Fixed-Bed Reactors," Energies, MDPI, vol. 16(8), pages 1-15, April.
    18. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    19. Weiming Zhan & Kejiang Li & Rita Khanna & Yuri Konyukhov & Zeng Liang & Yushan Bu & Zhen Sun & Chunhe Jiang & Jianliang Zhang, 2024. "The Catalytic Effect of Pt on Lignin Pyrolysis: A Reactive Molecular Dynamics Study," Sustainability, MDPI, vol. 16(8), pages 1-14, April.
    20. Chen, Dengyu & Cen, Kehui & Cao, Xiaobing & Chen, Fan & Zhang, Jie & Zhou, Jianbin, 2021. "Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6100-:d:1221886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.