IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v254y2019ics0306261919311675.html
   My bibliography  Save this article

Hierarchical control of thermostatically controlled loads oriented smart buildings

Author

Listed:
  • Xia, Mingchao
  • Song, Yuguang
  • Chen, Qifang

Abstract

With the transition of energy systems, synergetic interaction between consumers and suppliers has been an inevitable trend. As a demand response (DR) resource, thermostatically controlled loads (TCLs) can respond to power fluctuations in power grids caused by renewable energy and load activities by means of TCLs’ characteristics of good thermal energy storage and slow-varying thermal inertia. Aggregating TCLs by clustering methods neglects the coupling of diverse thermal parameters with the scattered geographical locations of controlled TCLs, and will increase the complexity of communication systems and decrease scalability and availability of demand-side scheduling potential. This paper proposes a state transition interval matching (STIM) control strategy and a pinning control method based hierarchical framework. Considering the controlled tendency and compressor lockout of TCLs, STIM strategy achieves unified control of heterogeneous TCLs at the lower layer, which could reduce the relative error caused by a small number of high-power TCLs. Thus, the control accuracy and availability of TCLs’ scheduling potential are enhanced. What’s more, this could help reduce the complexity of communication systems among aggregators and TCLs. At the upper layer, pinning control coordinates the scheduling capacities provided by different buildings in a sparse communication network. This could enhance control stability in the event of a communication fault, and would facilitate the aggregation of newly participating buildings. The feasibility and scalability of TCLs’ participation in DR service are improved by the proposed method of hierarchical control. Finally, the validity of the proposed strategy is verified via comparison with temperature priority list strategy.

Suggested Citation

  • Xia, Mingchao & Song, Yuguang & Chen, Qifang, 2019. "Hierarchical control of thermostatically controlled loads oriented smart buildings," Applied Energy, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919311675
    DOI: 10.1016/j.apenergy.2019.113493
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919311675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    2. Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2019. "Demand response with heuristic control strategies for modulating heat pumps," Applied Energy, Elsevier, vol. 238(C), pages 1346-1360.
    3. Kremers, Enrique & González de Durana, José Marı´a & Barambones, Oscar, 2013. "Emergent synchronisation properties of a refrigerator demand side management system," Applied Energy, Elsevier, vol. 101(C), pages 709-717.
    4. Hu, Maomao & Xiao, Fu, 2018. "Price-responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm," Applied Energy, Elsevier, vol. 219(C), pages 151-164.
    5. Jiang, Tao & Li, Zening & Jin, Xiaolong & Chen, Houhe & Li, Xue & Mu, Yunfei, 2018. "Flexible operation of active distribution network using integrated smart buildings with heating, ventilation and air-conditioning systems," Applied Energy, Elsevier, vol. 226(C), pages 181-196.
    6. Zhou, Yue & Wang, Chengshan & Wu, Jianzhong & Wang, Jidong & Cheng, Meng & Li, Gen, 2017. "Optimal scheduling of aggregated thermostatically controlled loads with renewable generation in the intraday electricity market," Applied Energy, Elsevier, vol. 188(C), pages 456-465.
    7. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    8. Zhu, Xianwen & Xia, Mingchao & Chiang, Hsiao-Dong, 2018. "Coordinated sectional droop charging control for EV aggregator enhancing frequency stability of microgrid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 210(C), pages 936-943.
    9. Lakshmanan, Venkatachalam & Marinelli, Mattia & Hu, Junjie & Bindner, Henrik W., 2016. "Provision of secondary frequency control via demand response activation on thermostatically controlled loads: Solutions and experiences from Denmark," Applied Energy, Elsevier, vol. 173(C), pages 470-480.
    10. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.
    11. Zou, Yanli & Chen, Guanrong, 2009. "Choosing effective controlled nodes for scale-free network synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2931-2940.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Martín-Crespo & Sergio Saludes-Rodil & Enrique Baeyens, 2021. "Flexibility Management with Virtual Batteries of Thermostatically Controlled Loads: Real-Time Control System and Potential in Spain," Energies, MDPI, vol. 14(6), pages 1-18, March.
    2. Song, Yuguang & Chen, Fangjian & Xia, Mingchao & Chen, Qifang, 2022. "The interactive dispatch strategy for thermostatically controlled loads based on the source–load collaborative evolution," Applied Energy, Elsevier, vol. 309(C).
    3. Jahangir Hossain & Aida. F. A. Kadir & Ainain. N. Hanafi & Hussain Shareef & Tamer Khatib & Kyairul. A. Baharin & Mohamad. F. Sulaima, 2023. "A Review on Optimal Energy Management in Commercial Buildings," Energies, MDPI, vol. 16(4), pages 1-40, February.
    4. Song, Yuguang & Xia, Mingchao & Chen, Qifang, 2023. "The robust synchronization control scheme for flexible resources considering the stochastic and delay response process," Applied Energy, Elsevier, vol. 343(C).
    5. Zhang, Anan & Zheng, Yadi & Huang, Huang & Ding, Ning & Zhang, Chengqian, 2022. "Co-integration theory-based cluster time-varying load optimization control model of regional integrated energy system," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yuguang & Chen, Fangjian & Xia, Mingchao & Chen, Qifang, 2022. "The interactive dispatch strategy for thermostatically controlled loads based on the source–load collaborative evolution," Applied Energy, Elsevier, vol. 309(C).
    2. Bomela, Walter & Zlotnik, Anatoly & Li, Jr-Shin, 2018. "A phase model approach for thermostatically controlled load demand response," Applied Energy, Elsevier, vol. 228(C), pages 667-680.
    3. Kai Ma & Chenliang Yuan & Jie Yang & Zhixin Liu & Xinping Guan, 2017. "Switched Control Strategies of Aggregated Commercial HVAC Systems for Demand Response in Smart Grids," Energies, MDPI, vol. 10(7), pages 1-18, July.
    4. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    5. Adhikari, Rajendra & Pipattanasomporn, M. & Rahman, S., 2018. "An algorithm for optimal management of aggregated HVAC power demand using smart thermostats," Applied Energy, Elsevier, vol. 217(C), pages 166-177.
    6. Li, Sihui & Peng, Jinqing & Zou, Bin & Li, Bojia & Lu, Chujie & Cao, Jingyu & Luo, Yimo & Ma, Tao, 2021. "Zero energy potential of photovoltaic direct-driven air conditioners with considering the load flexibility of air conditioners," Applied Energy, Elsevier, vol. 304(C).
    7. Kong, Xiangyu & Kong, Deqian & Yao, Jingtao & Bai, Linquan & Xiao, Jie, 2020. "Online pricing of demand response based on long short-term memory and reinforcement learning," Applied Energy, Elsevier, vol. 271(C).
    8. Diaz-Londono, Cesar & Enescu, Diana & Ruiz, Fredy & Mazza, Andrea, 2020. "Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads," Applied Energy, Elsevier, vol. 272(C).
    9. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    10. Liu, Hui & Wang, Bin & Wang, Ni & Wu, Qiuwei & Yang, Yude & Wei, Hua & Li, Canbing, 2018. "Enabling strategies of electric vehicles for under frequency load shedding," Applied Energy, Elsevier, vol. 228(C), pages 843-851.
    11. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    13. Wang, Xiaoyu & Jia, Hongjie & Jin, Xiaolong & Mu, Yunfei & Wei, Wei & Yu, Xiaodan & Liang, Shuo, 2024. "Bi-level optimal operations for grid operator and low-carbon building prosumers with peer-to-peer energy sharing," Applied Energy, Elsevier, vol. 359(C).
    14. Luciana Marques & Wadaed Uturbey & Miguel Heleno, 2021. "An Integer Non-Cooperative Game Approach for the Transactive Control of Thermal Appliances in Energy Communities," Energies, MDPI, vol. 14(21), pages 1-22, October.
    15. Winstead, Christopher & Bhandari, Mahabir & Nutaro, James & Kuruganti, Teja, 2020. "Peak load reduction and load shaping in HVAC and refrigeration systems in commercial buildings by using a novel lightweight dynamic priority-based control strategy," Applied Energy, Elsevier, vol. 277(C).
    16. Yoon, Ah-Yun & Kim, Young-Jin & Zakula, Tea & Moon, Seung-Ill, 2020. "Retail electricity pricing via online-learning of data-driven demand response of HVAC systems," Applied Energy, Elsevier, vol. 265(C).
    17. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    18. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    19. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    20. Chassin, David P. & Behboodi, Sahand & Djilali, Ned, 2018. "Optimal subhourly electricity resource dispatch under multiple price signals with high renewable generation availability," Applied Energy, Elsevier, vol. 213(C), pages 262-271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919311675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.