IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v78y2017icp1007-1032.html
   My bibliography  Save this article

Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review

Author

Listed:
  • Mohapatra, Sonali
  • Mishra, Chinmaya
  • Behera, Sudhansu S.
  • Thatoi, Hrudayanath

Abstract

Grasses as lignocellulose biomass are promising feed stocks for renewable bioethanol production, since these raw materials have high productivity, require low agricultural inputs, have positive environmental impacts, are easy to process and do not compete with the food crops. However, bioethanol production from grass biomass requires efficient pre-treatment, enzymatic hydrolysis and microbial fermentation processes which varies with types of grass species and the microorganisms used. Pretreatment is an important process for delignification of lignocellulose biomass and is dependent on the type of lignin present in the biomass and the degradation pathway employed for removal of the specific type of lignin. Further, enzymatic hydrolysis converts the cellulose and hemicellulose into monomers, making it feasible for the fermenting microorganisms to convert it into bioethanol where use of improved strain and biomass can yield higher ethanol on industrial scale. This review paper presents an overview of the types of grass species, their composition and cultivation practices, fermentation process used for bioethanol production and genetic tools used for improvement in bioethanol production from grass biomass on a sustainable basis. The current knowledge and future prospect for industrial bioethanol production from grass biomass along with its economic aspects have also been discussed in this review.

Suggested Citation

  • Mohapatra, Sonali & Mishra, Chinmaya & Behera, Sudhansu S. & Thatoi, Hrudayanath, 2017. "Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1007-1032.
  • Handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:1007-1032
    DOI: 10.1016/j.rser.2017.05.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117306573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xue & Guojie Wang & Paul E. Nyren, 2013. "Biomass Production in Northern Great Plains of USA - Agronomic Perspective," Chapters, in: Miodrag Darko Matovic (ed.), Biomass Now - Cultivation and Utilization, IntechOpen.
    2. AfDB AfDB, . "Africa’s Voice and Financier," African Development Fund Series, African Development Bank, number 12 edited by Jihene Aissaoui.
    3. Jiangang Peng & Jing He & Zhangfei Li & Yu Yi & Nicolaas Groenewold, 2010. "Regional Finance And Regional Disparities In China," Australian Economic Papers, Wiley Blackwell, vol. 49(4), pages 301-322, December.
    4. Insurance and AFPs of Peru Superintendence of Banks & Consultative Group to Assist the Poor, 2010. "Financial Inclusion and Consumer Protection in Peru," World Bank Publications - Reports 21838, The World Bank Group.
    5. Lili Zhao & Xiliang Zhang & Jie Xu & Xunmin Ou & Shiyan Chang & Maorong Wu, 2015. "Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover," Energies, MDPI, vol. 8(5), pages 1-22, May.
    6. Behera, Shuvashish & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2011. "Ethanol production from mahula (Madhuca latifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffa cylindrica L. sponge discs," Applied Energy, Elsevier, vol. 88(1), pages 212-215, January.
    7. Singh, Anita & Sharma, Punita & Saran, Alok Kumar & Singh, Namita & Bishnoi, Narsi R., 2013. "Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices," Renewable Energy, Elsevier, vol. 50(C), pages 488-493.
    8. Adekunle, Ademola & Orsat, Valerie & Raghavan, Vijaya, 2016. "Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 518-530.
    9. anonymous, 2010. "Addressing the financing needs of small businesses," Community Investments, Federal Reserve Bank of San Francisco, vol. 22(Fall), pages 29-3241.
    10. Zhiguo He & Wei Xiong, 2010. "Financing Speculative Booms," Levine's Working Paper Archive 661465000000000327, David K. Levine.
    11. van Eijck, Janske & Batidzirai, Bothwell & Faaij, André, 2014. "Current and future economic performance of first and second generation biofuels in developing countries," Applied Energy, Elsevier, vol. 135(C), pages 115-141.
    12. Tan, Kok Tat & Lee, Keat Teong & Mohamed, Abdul Rahman, 2008. "Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol," Energy Policy, Elsevier, vol. 36(9), pages 3360-3365, September.
    13. Bruce S. Dien & Michael D. Casler & Ronald E. Hector & Loren B. Iten & Nancy N. Nichols & Jeffrey A. Mertens & Michael A. Cotta, 2011. "Biochemical processing of reed canarygrass into fuel ethanol," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 7(4), pages 338-347, October.
    14. Tye, Ying Ying & Lee, Keat Teong & Wan Abdullah, Wan Nadiah & Leh, Cheu Peng, 2016. "The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 155-172.
    15. Samy Sadaka & Mahmoud A. Sharara & Amanda Ashworth & Patrick Keyser & Fred Allen & Andrew Wright, 2014. "Characterization of Biochar from Switchgrass Carbonization," Energies, MDPI, vol. 7(2), pages 1-20, January.
    16. Ryan, Lisa & Convery, Frank & Ferreira, Susana, 2006. "Stimulating the use of biofuels in the European Union: Implications for climate change policy," Energy Policy, Elsevier, vol. 34(17), pages 3184-3194, November.
    17. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    18. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
    19. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    20. Achleitner, A.-K. & Bock, Carolin & Tappeiner, F., 2010. "Financial Covenants in LBOs vor und nach dem Lehman-Kollaps," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 77315, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yingji & Ge, Shengbo & Xia, Changlei & Mei, Changtong & Kim, Ki-Hyun & Cai, Liping & Smith, Lee M. & Lee, Jechan & Shi, Sheldon Q., 2021. "Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    2. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Piotr Banaszuk, 2021. "Specific Methane Yield of Wetland Biomass in Dry and Wet Fermentation Technologies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    3. Raud, M. & Kikas, T. & Sippula, O. & Shurpali, N.J., 2019. "Potentials and challenges in lignocellulosic biofuel production technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 44-56.
    4. Usmani, Zeba & Sharma, Minaxi & Awasthi, Abhishek Kumar & Lukk, Tiit & Tuohy, Maria G. & Gong, Liang & Nguyen-Tri, Phuong & Goddard, Alan D. & Bill, Roslyn M. & Nayak, S.Chandra & Gupta, Vijai Kumar, 2021. "Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Attila Jámbor & Áron Török, 2019. "The Economics of Arundo donax —A Systematic Literature Review," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    6. Rahaman, Touhidur & Biswas, Subhadeep & Ghorai, Shubhankar & Bera, Sudeshna & Dey, Sonali & Guha, Suman & Maity, Debabrata & De, Sukanta & Ganguly, Jhuma & Das, Malay, 2023. "Integrated application of morphological, anatomical, biochemical and physico-chemical methods to identify superior, lignocellulosic grass feedstocks for bioenergy purposes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Zhang, Yi & Li, Lianhua & Kang, Xihui & Sun, Yongming & Yuan, Zhenhong & Xing, Tao & Lin, Richen, 2019. "Improving methane production from Pennisetum hybrid by monitoring plant height and ensiling pretreatment," Renewable Energy, Elsevier, vol. 141(C), pages 57-63.
    8. Li, Bingshuo & Yang, Tianhua & Li, Rundong & Kai, Xingping, 2020. "Co-generation of liquid biofuels from lignocellulose by integrated biochemical and hydrothermal liquefaction process," Energy, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    2. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    3. González-García, Sara & Luo, Lin & Moreira, Mª Teresa & Feijoo, Gumersindo & Huppes, Gjalt, 2009. "Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1922-1933, October.
    4. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    5. Dodić, Jelena M. & Vučurović, Damjan G. & Dodić, Siniša N. & Grahovac, Jovana A. & Popov, Stevan D. & Nedeljković, Nataša M., 2012. "Kinetic modelling of batch ethanol production from sugar beet raw juice," Applied Energy, Elsevier, vol. 99(C), pages 192-197.
    6. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    7. Nayak, Abhishek & Pulidindi, Indra Neel & Rao, Chinta Sankar, 2020. "Novel strategies for glucose production from biomass using heteropoly acid catalyst," Renewable Energy, Elsevier, vol. 159(C), pages 215-220.
    8. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    9. González-García, Sara & Moreira, M. Teresa & Feijoo, Gumersindo, 2010. "Comparative environmental performance of lignocellulosic ethanol from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2077-2085, September.
    10. Aditiya, H.B. & Mahlia, T.M.I. & Chong, W.T. & Nur, Hadi & Sebayang, A.H., 2016. "Second generation bioethanol production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 631-653.
    11. Adekunle, Ademola & Orsat, Valerie & Raghavan, Vijaya, 2016. "Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 518-530.
    12. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    13. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
    14. Yuvadetkun, Prawphan & Reungsang, Alissara & Boonmee, Mallika, 2018. "Comparison between free cells and immobilized cells of Candida shehatae in ethanol production from rice straw hydrolysate using repeated batch cultivation," Renewable Energy, Elsevier, vol. 115(C), pages 634-640.
    15. Moncada, J.A. & Lukszo, Z. & Junginger, M. & Faaij, A. & Weijnen, M., 2017. "A conceptual framework for the analysis of the effect of institutions on biofuel supply chains," Applied Energy, Elsevier, vol. 185(P1), pages 895-915.
    16. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Rattanapan, Anuchit & Limtong, Savitree & Phisalaphong, Muenduen, 2011. "Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons," Applied Energy, Elsevier, vol. 88(12), pages 4400-4404.
    18. Hafid, Halimatun Saadiah & Rahman, Nor’ Aini Abdul & Shah, Umi Kalsom Md & Baharuddin, Azhari Samsu & Ariff, Arbakariya B., 2017. "Feasibility of using kitchen waste as future substrate for bioethanol production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 671-686.
    19. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Ma Teresa & Feijoo, Gumersindo, 2010. "Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe," Renewable Energy, Elsevier, vol. 35(5), pages 1014-1023.
    20. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Mª Teresa & Feijoo, Gumersindo, 2009. "Environmental aspects of ethanol-based fuels from Brassica carinata: A case study of second generation ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2613-2620, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:1007-1032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.