IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v272y2023ics0360544223004619.html
   My bibliography  Save this article

Data-driven enabling technologies in soft sensors of modern internal combustion engines: Perspectives

Author

Listed:
  • Li, Ji
  • Zhou, Quan
  • He, Xu
  • Chen, Wan
  • Xu, Hongming

Abstract

Under the dual thrust of decarbonisation and digitalisation, data-driven enabling technologies become the most promising solutions to reducing the time, cost, and effort required in the development of modern internal combustion engines (ICEs) in which it is hard to handle high-data-cost, high-dimensional, complex nonlinear modelling problems. This paper proposes a view of data-driven enabling technologies used in ICE soft sensors with a focus on the reduction of experimental effort and model complexity to accelerate the development of ICE decarbonisation. The current progress in data-driven modelling of ICEs is briefly outlined from four aspects: data acquisition methods, data processing methods, machine learning methods and model validation methods. Moreover, the challenges of establishing ICE models with high accuracy, fast response, and strong robustness for real-time control are structured and analysed. Based on the challenges, perspectives on three aspects of versatility, practicality, and autonomy are presented. Finally, physics/data-enhanced machine learning and digital twin technology are suggested to empower soft sensors used for modern ICEs.

Suggested Citation

  • Li, Ji & Zhou, Quan & He, Xu & Chen, Wan & Xu, Hongming, 2023. "Data-driven enabling technologies in soft sensors of modern internal combustion engines: Perspectives," Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223004619
    DOI: 10.1016/j.energy.2023.127067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223004619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    2. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yao, Baofeng & Wang, Yan, 2022. "An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC)," Energy, Elsevier, vol. 254(PB).
    3. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Ge, Yunshan & Meng, Hao & Yang, Jinxin & Chang, Ke & Wang, Shuofeng, 2022. "Comparison and evaluation of advanced machine learning methods for performance and emissions prediction of a gasoline Wankel rotary engine," Energy, Elsevier, vol. 248(C).
    4. Yang, Chao & Liu, Kaijia & Jiao, Xiaohong & Wang, Weida & Chen, Ruihu & You, Sixiong, 2022. "An adaptive firework algorithm optimization-based intelligent energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 239(PB).
    5. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    6. Zandie, Mohammad & Ng, Hoon Kiat & Gan, Suyin & Muhamad Said, Mohd Farid & Cheng, Xinwei, 2023. "Multi-input multi-output machine learning predictive model for engine performance and stability, emissions, combustion and ignition characteristics of diesel-biodiesel-gasoline blends," Energy, Elsevier, vol. 262(PA).
    7. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice, 2022. "Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 239(PD).
    8. Hanhua Shao & Jixin Cheng & Yuansheng Wang & Xiaoming Li, 2022. "Can Digital Finance Promote Comprehensive Carbon Emission Performance? Evidence from Chinese Cities," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    9. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    10. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    11. Powell, Siobhan & Vianna Cezar, Gustavo & Apostolaki-Iosifidou, Elpiniki & Rajagopal, Ram, 2022. "Large-scale scenarios of electric vehicle charging with a data-driven model of control," Energy, Elsevier, vol. 248(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Chavando & Valter Silva & João Cardoso & Daniela Eusebio, 2024. "Advancements and Challenges of Ammonia as a Sustainable Fuel for the Maritime Industry," Energies, MDPI, vol. 17(13), pages 1-35, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    2. Lyu Jun & Shuang Lu & Xiang Li & Zeng Li & Chenglong Cao, 2023. "Spatio-Temporal Characteristics of Industrial Carbon Emission Efficiency and Their Impacts from Digital Economy at Chinese Prefecture-Level Cities," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    3. Wang, Huaiyu & Ji, Changwei & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan, 2022. "Towards a comprehensive optimization of the intake characteristics for side ported Wankel rotary engines by coupling machine learning with genetic algorithm," Energy, Elsevier, vol. 261(PB).
    4. Xiaoli Wu & Yaoyao Qin & Qizhuo Xie & Yunyi Zhang, 2022. "The Mediating and Moderating Effects of the Digital Economy on PM 2.5 : Evidence from China," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    5. Aliakbari, Karim & Ebrahimi-Moghadam, Amir & Pahlavanzadeh, Mohammadsadegh & Moradi, Reza, 2023. "Performance characteristics and exhaust emissions of a single-cylinder diesel engine for different fuels: Experimental investigation and artificial intelligence network," Energy, Elsevier, vol. 284(C).
    6. Yukun Ma & Shaojian Wang & Chunshan Zhou, 2023. "Can the Development of the Digital Economy Reduce Urban Carbon Emissions? Case Study of Guangdong Province," Land, MDPI, vol. 12(4), pages 1-13, March.
    7. Haiyan Lei & Suiping Zeng & Aihemaiti Namaiti & Jian Zeng, 2023. "The Impacts of Road Traffic on Urban Carbon Emissions and the Corresponding Planning Strategies," Land, MDPI, vol. 12(4), pages 1-20, March.
    8. Wang, Chongyao & Wang, Xin & Wang, Huaiyu & Xu, Yonghong & Ge, Yunshan & Tan, Jianwei & Hao, Lijun & Wang, Yachao & Zhang, Mengzhu & Li, Ruonan, 2024. "Co-optimizing NOx emission and power output of a natural gas engine-ORC combined system through neural networks and genetic algorithms," Energy, Elsevier, vol. 289(C).
    9. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    10. Lingxiang Jian & Shuxuan Guo & Shengqing Yu, 2023. "Effect of Artificial Intelligence on the Development of China’s Wholesale and Retail Trade," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    11. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    12. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    13. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    14. Nan Li & Beibei Shi & Rong Kang, 2023. "Analysis of the Coupling Effect and Space-Time Difference between China’s Digital Economy Development and Carbon Emissions Reduction," IJERPH, MDPI, vol. 20(1), pages 1-25, January.
    15. Su-qi Zhang & Kuo-Ping Lin, 2020. "Short-Term Traffic Flow Forecasting Based on Data-Driven Model," Mathematics, MDPI, vol. 8(2), pages 1-17, January.
    16. Da Gao & Chang Liu & Xinyan Wei & Yang Liu, 2023. "Can River Chief System Policy Improve Enterprises’ Energy Efficiency? Evidence from China," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    17. Jingrong Tan & Lin Chen, 2022. "Spatial Effect of Digital Economy on Particulate Matter 2.5 in the Process of Smart Cities: Evidence from Prefecture-Level Cities in China," IJERPH, MDPI, vol. 19(21), pages 1-20, November.
    18. Wu, Guoyong & Gao, Yue & Feng, Yanchao, 2023. "Assessing the environmental effects of the supporting policies for mineral resource-exhausted cities in China," Resources Policy, Elsevier, vol. 85(PB).
    19. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    20. Min-Xing Wang & Lufei Huang & Zhen-Ming Chen, 2023. "The Impact of Green Financial Policy on the Regional Economic Development Level and AQI—Evidence from Zhejiang Province, China," Sustainability, MDPI, vol. 15(5), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223004619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.