IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v201y2020ics0360544220308185.html
   My bibliography  Save this article

Demonstration of Mg(NO3)2·6H2O-based composite phase change material for practical-scale medium-low temperature thermal energy storage

Author

Listed:
  • Zhao, B.C.
  • Li, T.X.
  • He, F.
  • Gao, J.C.
  • Wang, R.Z.

Abstract

This work focuses on the industrialization-oriented investigation of a latent heat storage using a magnesium nitrate hydrate-based composite phase change material. Three aspects of studies are included: (i) characterizations on the thermal-physical properties of the composite, (ii) explorations on the supercooling stability of the composite within continuous thermal cycles, and (iii) evaluations on the thermal performance of a pilot-scale storage unit. The results indicate that the freshly-prepared composite has a fusion heat of 147.9 ± 0.5 J g−1, a storage capacity of 253.5 ± 0.9 J g−1 within 70–110 °C. The PCM presents no significant degradation after 100 thermal cycles. The material performs a better supercooling stability than pure magnesium nitrate hexahydrate. The designed latent heat storage unit can achieve stable charges and discharges with an effective heat storage density of 33.5 ± 2.6 kWh m−3, a thermal efficiency of 88.1 ± 9.6% and a thermal loss of around 10% during a daily operation. In addition, the storage unit performs a higher latent heat release concentration as discharging rate drops and its effective storage capacity within 80–85 °C is over 4.3 times of water storage. The

Suggested Citation

  • Zhao, B.C. & Li, T.X. & He, F. & Gao, J.C. & Wang, R.Z., 2020. "Demonstration of Mg(NO3)2·6H2O-based composite phase change material for practical-scale medium-low temperature thermal energy storage," Energy, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220308185
    DOI: 10.1016/j.energy.2020.117711
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220308185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    2. Zhao, B.C. & Wang, R.Z., 2019. "Perspectives for short-term thermal energy storage using salt hydrates for building heating," Energy, Elsevier, vol. 189(C).
    3. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    4. Muthusivagami, R.M. & Velraj, R. & Sethumadhavan, R., 2010. "Solar cookers with and without thermal storage--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 691-701, February.
    5. Li, T.X. & Xu, J.X. & Wu, D.L. & He, F. & Wang, R.Z., 2019. "High energy-density and power-density thermal storage prototype with hydrated salt for hot water and space heating," Applied Energy, Elsevier, vol. 248(C), pages 406-414.
    6. Christopher Barrington-Leigh & Jill Baumgartner & Ellison Carter & Brian E. Robinson & Shu Tao & Yuanxun Zhang, 2019. "An evaluation of air quality, home heating and well-being under Beijing’s programme to eliminate household coal use," Nature Energy, Nature, vol. 4(5), pages 416-423, May.
    7. Calabrese, Luigi & Brancato, Vincenza & Paolomba, Valeria & Proverbio, Edoardo, 2019. "An experimental study on the corrosion sensitivity of metal alloys for usage in PCM thermal energy storages," Renewable Energy, Elsevier, vol. 138(C), pages 1018-1027.
    8. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    9. Zhao, B.C. & Li, T.X. & Gao, J.C. & Wang, R.Z., 2020. "Latent heat thermal storage using salt hydrates for distributed building heating: A multi-level scale-up research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    10. Domanski, R. & El-Sebaii, A.A. & Jaworski, M., 1995. "Cooking during off-sunshine hours using PCMs as storage media," Energy, Elsevier, vol. 20(7), pages 607-616.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, B.C. & Wang, R.Z., 2020. "A novel 3-D model of an industrial-scale tube-fin latent heat storage using salt hydrates with supercooling: A model validation," Energy, Elsevier, vol. 213(C).
    2. Yang Li & Caixia Wang & Jun Zong & Jien Ma & Youtong Fang, 2021. "Experimental Research of the Heat Storage Performance of a Magnesium Nitrate Hexahydrate-Based Phase Change Material for Building Heating," Energies, MDPI, vol. 14(21), pages 1-11, November.
    3. Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
    4. Wang, Lu & Guo, Leihong & Ren, Jianlin & Kong, Xiangfei, 2022. "Using of heat thermal storage of PCM and solar energy for distributed clean building heating: A multi-level scale-up research," Applied Energy, Elsevier, vol. 321(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Li & Caixia Wang & Jun Zong & Jien Ma & Youtong Fang, 2021. "Experimental Research of the Heat Storage Performance of a Magnesium Nitrate Hexahydrate-Based Phase Change Material for Building Heating," Energies, MDPI, vol. 14(21), pages 1-11, November.
    2. Zhao, B.C. & Li, T.X. & Gao, J.C. & Wang, R.Z., 2020. "Latent heat thermal storage using salt hydrates for distributed building heating: A multi-level scale-up research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    3. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    4. Zhao, B.C. & Wang, R.Z., 2020. "A novel 3-D model of an industrial-scale tube-fin latent heat storage using salt hydrates with supercooling: A model validation," Energy, Elsevier, vol. 213(C).
    5. Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
    6. Tomasz Tietze & Piotr Szulc & Daniel Smykowski & Andrzej Sitka & Romuald Redzicki, 2021. "Application of Phase Change Material and Artificial Neural Networks for Smoothing of Heat Flux Fluctuations," Energies, MDPI, vol. 14(12), pages 1-17, June.
    7. Zhao, B.C. & Wang, R.Z., 2019. "Perspectives for short-term thermal energy storage using salt hydrates for building heating," Energy, Elsevier, vol. 189(C).
    8. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    9. Zhang, Yi & Tao, Wen & Wang, Kehan & Li, Dongxu, 2020. "Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica," Renewable Energy, Elsevier, vol. 149(C), pages 400-408.
    10. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    11. Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
    12. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    13. Liu, Yang & Wang, Hongxia & Ayub, Iqra & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2021. "A variable cross-section annular fins type metal hydride reactor for improving the phenomenon of inhomogeneous reaction in the thermal energy storage processes," Applied Energy, Elsevier, vol. 295(C).
    14. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Tian, Shen & Yang, Qifan & Hui, Na & Bai, Haozhi & Shao, Shuangquan & Liu, Shengchun, 2020. "Discharging process and performance of a portable cold thermal energy storage panel driven by embedded heat pipes," Energy, Elsevier, vol. 205(C).
    16. Hekimoğlu, Gökhan & Nas, Memduh & Ouikhalfan, Mohammed & Sarı, Ahmet & Tyagi, V.V. & Sharma, R.K. & Kurbetci, Şirin & Saleh, Tawfik A., 2021. "Silica fume/capric acid-stearic acid PCM included-cementitious composite for thermal controlling of buildings: Thermal energy storage and mechanical properties," Energy, Elsevier, vol. 219(C).
    17. Prakash, Jyoti & Roan, Daryn & Tauqir, Wajeha & Nazir, Hassan & Ali, Majid & Kannan, Arunachala, 2019. "Off-grid solar thermal water heating system using phase-change materials: design, integration and real environment investigation," Applied Energy, Elsevier, vol. 240(C), pages 73-83.
    18. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
    19. Guo, Zhongjie & Wei, Wei & Chen, Laijun & Zhang, Xiaoping & Mei, Shengwei, 2021. "Equilibrium model of a regional hydrogen market with renewable energy based suppliers and transportation costs," Energy, Elsevier, vol. 220(C).
    20. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220308185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.