IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6883-d920047.html
   My bibliography  Save this article

A Novel Dynamic Event-Triggered Mechanism for Distributed Secondary Control in Islanded AC Microgrids

Author

Listed:
  • Boyang Huang

    (Electric Power Research Institute of China Southern Power Grid Co., Ltd., Guangzhou 510700, China)

  • Yong Xiao

    (Electric Power Research Institute of China Southern Power Grid Co., Ltd., Guangzhou 510700, China)

  • Xin Jin

    (Electric Power Research Institute of China Southern Power Grid Co., Ltd., Guangzhou 510700, China)

  • Junhao Feng

    (Electric Power Research Institute of China Southern Power Grid Co., Ltd., Guangzhou 510700, China)

  • Xin Li

    (Department of Artificial Intelligence and Automation, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Li Ding

    (Department of Artificial Intelligence and Automation, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

Abstract

In this paper, the frequency/voltage restoration and active power sharing problems of islanded AC microgrids are studied. A novel distributed dynamic event-triggered secondary control scheme is proposed to reduce the communication burden. The continuous monitoring of event-triggered conditions and Zeno behavior can be fundamentally avoided by periodically evaluating event-triggered conditions. In addition, by introducing an adaptive coefficient related to the system deviations, the control performance can be improved. Sufficient conditions to ensure the stability of the system are provided through a Lyapunov function. Lastly, the effectiveness of our proposed secondary control scheme is verified in a MATLAB/SimPowerSystems environment.

Suggested Citation

  • Boyang Huang & Yong Xiao & Xin Jin & Junhao Feng & Xin Li & Li Ding, 2022. "A Novel Dynamic Event-Triggered Mechanism for Distributed Secondary Control in Islanded AC Microgrids," Energies, MDPI, vol. 15(19), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6883-:d:920047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    2. Darioush Razmi & Tianguang Lu, 2022. "A Literature Review of the Control Challenges of Distributed Energy Resources Based on Microgrids (MGs): Past, Present and Future," Energies, MDPI, vol. 15(13), pages 1-21, June.
    3. Shafaat Ullah & Laiq Khan & Irfan Sami & Ghulam Hafeez & Fahad R. Albogamy, 2021. "A Distributed Hierarchical Control Framework for Economic Dispatch and Frequency Regulation of Autonomous AC Microgrids," Energies, MDPI, vol. 14(24), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariel Villalón & Carlos Muñoz & Javier Muñoz & Marco Rivera, 2023. "Fixed-Switching-Frequency Modulated Model Predictive Control for Islanded AC Microgrid Applications," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    2. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    3. Farhad Amiri & Mohsen Eskandari & Mohammad Hassan Moradi, 2023. "Virtual Inertia Control in Autonomous Microgrids via a Cascaded Controller for Battery Energy Storage Optimized by Firefly Algorithm and a Comparison Study with GA, PSO, ABC, and GWO," Energies, MDPI, vol. 16(18), pages 1-22, September.
    4. Shangguan, Xing-Chen & He, Yong & Zhang, Chuan-Ke & Jiang, Lin & Wu, Min, 2022. "Load frequency control of time-delayed power system based on event-triggered communication scheme," Applied Energy, Elsevier, vol. 308(C).
    5. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    6. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    7. Emmanuel Hernández-Mayoral & Manuel Madrigal-Martínez & Jesús D. Mina-Antonio & Reynaldo Iracheta-Cortez & Jesús A. Enríquez-Santiago & Omar Rodríguez-Rivera & Gregorio Martínez-Reyes & Edwin Mendoza-, 2023. "A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources," Sustainability, MDPI, vol. 15(12), pages 1-53, June.
    8. Yu He & Xinhui Zhang & Rui Wang & Mengzhu Cheng & Zhen Gao & Zheng Zhang & Wenxin Yu, 2022. "Faulty Section Location Method Based on Dynamic Time Warping Distance in a Resonant Grounding System," Energies, MDPI, vol. 15(13), pages 1-15, July.
    9. Md Shafiul Alam, 2022. "Power Management for Distributed Generators Integrated System," Energies, MDPI, vol. 15(16), pages 1-3, August.
    10. Rao, Yingqing & Yang, Jun & Xiao, Jinxing & Xu, Bingyan & Liu, Wenjing & Li, Yonghui, 2021. "A frequency control strategy for multimicrogrids with V2G based on the improved robust model predictive control," Energy, Elsevier, vol. 222(C).
    11. Wang, Xiaobo & Huang, Wentao & Li, Ran & Tai, Nengling & Zong, Ming, 2023. "Frequency-based demand side response considering the discontinuity of the ToU tariff," Applied Energy, Elsevier, vol. 348(C).
    12. Miao Zhang & Keyu Zhuang & Tong Zhao & Xianli Chen & Jingze Xue & Zheng Qiao & Shuai Cui & Yunlong Gao, 2022. "Bus Voltage Control of Photovoltaic Grid Connected Inverter Based on Adaptive Linear Active Disturbance Rejection," Energies, MDPI, vol. 15(15), pages 1-20, July.
    13. Md Shafiullah & Akib Mostabe Refat & Md Ershadul Haque & Dewan Mabrur Hasan Chowdhury & Md Sanower Hossain & Abdullah G. Alharbi & Md Shafiul Alam & Amjad Ali & Shorab Hossain, 2022. "Review of Recent Developments in Microgrid Energy Management Strategies," Sustainability, MDPI, vol. 14(22), pages 1-30, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6883-:d:920047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.