IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v229y2018icp660-671.html
   My bibliography  Save this article

A generic microgrid controller: Concept, testing, and insights

Author

Listed:
  • Razeghi, Ghazal
  • Gu, Fei
  • Neal, Russell
  • Samuelsen, Scott

Abstract

Microgrids have garnered attention in recent years as a way to increase the reliability of the grid, increase the reliability of electricity service to customers, adapt to an increasing percentage of intermittent renewable generation, and serve both customer critical loads and the needs of adjacent communities in the case of emergencies such as natural disasters. One barrier to microgrids is the historic cost and lack of standardization associated with microgrid controllers. To reduce this cost and address standardization, specifications for a Generic Microgrid Controller (GMC) were developed with the goal to facilitate the design and ease of adaptation of microgrid controllers to various microgrids of different sizes and with different resources. A GMC must address two core functions, Transition and Dispatch, as well as several optional higher level functions such as economic dispatch, and renewable and load forecasting.

Suggested Citation

  • Razeghi, Ghazal & Gu, Fei & Neal, Russell & Samuelsen, Scott, 2018. "A generic microgrid controller: Concept, testing, and insights," Applied Energy, Elsevier, vol. 229(C), pages 660-671.
  • Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:660-671
    DOI: 10.1016/j.apenergy.2018.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918311693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Razeghi, Ghazal & Brouwer, Jack & Samuelsen, Scott, 2016. "A spatially and temporally resolved model of the electricity grid – Economic vs environmental dispatch," Applied Energy, Elsevier, vol. 178(C), pages 540-556.
    2. Quashie, Mike & Marnay, Chris & Bouffard, François & Joós, Géza, 2018. "Optimal planning of microgrid power and operating reserve capacity," Applied Energy, Elsevier, vol. 210(C), pages 1229-1236.
    3. Nemati, Mohsen & Braun, Martin & Tenbohlen, Stefan, 2018. "Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming," Applied Energy, Elsevier, vol. 210(C), pages 944-963.
    4. Lo Prete, Chiara & Hobbs, Benjamin F. & Norman, Catherine S. & Cano-Andrade, Sergio & Fuentes, Alejandro & von Spakovsky, Michael R. & Mili, Lamine, 2012. "Sustainability and reliability assessment of microgrids in a regional electricity market," Energy, Elsevier, vol. 41(1), pages 192-202.
    5. Majzoobi, Alireza & Khodaei, Amin, 2017. "Application of microgrids in providing ancillary services to the utility grid," Energy, Elsevier, vol. 123(C), pages 555-563.
    6. Kofinas, P. & Dounis, A.I. & Vouros, G.A., 2018. "Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids," Applied Energy, Elsevier, vol. 219(C), pages 53-67.
    7. Jin, Ming & Feng, Wei & Marnay, Chris & Spanos, Costas, 2018. "Microgrid to enable optimal distributed energy retail and end-user demand response," Applied Energy, Elsevier, vol. 210(C), pages 1321-1335.
    8. Li, Mengyu & Zhang, Xiongwen & Li, Guojun & Jiang, Chaoyang, 2016. "A feasibility study of microgrids for reducing energy use and GHG emissions in an industrial application," Applied Energy, Elsevier, vol. 176(C), pages 138-148.
    9. Li, Zhengmao & Xu, Yan, 2018. "Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes," Applied Energy, Elsevier, vol. 210(C), pages 974-986.
    10. Wang, Jianxiao & Zhong, Haiwang & Tang, Wenyuan & Rajagopal, Ram & Xia, Qing & Kang, Chongqing & Wang, Yi, 2017. "Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products," Applied Energy, Elsevier, vol. 205(C), pages 294-303.
    11. Bolívar Jaramillo, Lucas & Weidlich, Anke, 2016. "Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads," Applied Energy, Elsevier, vol. 169(C), pages 857-865.
    12. Quashie, Mike & Bouffard, François & Joós, Géza, 2017. "Business cases for isolated and grid connected microgrids: Methodology and applications," Applied Energy, Elsevier, vol. 205(C), pages 105-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, J. & Razeghi, G. & Samuelsen, S., 2022. "Generic microgrid controller with self-healing capabilities," Applied Energy, Elsevier, vol. 308(C).
    2. Lee, J. & Bérard, Jean-Philippe & Razeghi, G. & Samuelsen, S., 2020. "Maximizing PV hosting capacity of distribution feeder microgrid," Applied Energy, Elsevier, vol. 261(C).
    3. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    4. Juan Montoya & Ron Brandl & Keerthi Vishwanath & Jay Johnson & Rachid Darbali-Zamora & Adam Summers & Jun Hashimoto & Hiroshi Kikusato & Taha Selim Ustun & Nayeem Ninad & Estefan Apablaza-Arancibia & , 2020. "Advanced Laboratory Testing Methods Using Real-Time Simulation and Hardware-in-the-Loop Techniques: A Survey of Smart Grid International Research Facility Network Activities," Energies, MDPI, vol. 13(12), pages 1-38, June.
    5. Sun, Chu & Ali, Syed Qaseem & Joos, Geza & Paquin, Jean-Nicolas & Montenegro, Juan Felipe Patarroyo, 2023. "Design and CHIL testing of microgrid controller with general rule-based dispatch," Applied Energy, Elsevier, vol. 345(C).
    6. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    7. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Mei, Jie & Chen, Chen & Wang, Jianhui & Kirtley, James L., 2019. "Coalitional game theory based local power exchange algorithm for networked microgrids," Applied Energy, Elsevier, vol. 239(C), pages 133-141.
    9. Alessandro Burgio & Daniele Menniti & Nicola Sorrentino & Anna Pinnarelli & Zbigniew Leonowicz, 2020. "Influence and Impact of Data Averaging and Temporal Resolution on the Assessment of Energetic, Economic and Technical Issues of Hybrid Photovoltaic-Battery Systems," Energies, MDPI, vol. 13(2), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    3. Dutton, Spencer & Marnay, Chris & Feng, Wei & Robinson, Matthew & Mammoli, Andrea, 2019. "Moore vs. Murphy: Tradeoffs between complexity and reliability in distributed energy system scheduling using software-as-a-service," Applied Energy, Elsevier, vol. 238(C), pages 1126-1137.
    4. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).
    5. Wang, Jing & Zhao, Changhong & Pratt, Annabelle & Baggu, Murali, 2018. "Design of an advanced energy management system for microgrid control using a state machine," Applied Energy, Elsevier, vol. 228(C), pages 2407-2421.
    6. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    7. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    8. Hong, Bowen & Zhang, Weitong & Zhou, Yue & Chen, Jian & Xiang, Yue & Mu, Yunfei, 2018. "Energy-Internet-oriented microgrid energy management system architecture and its application in China," Applied Energy, Elsevier, vol. 228(C), pages 2153-2164.
    9. Azimian, Mahdi & Amir, Vahid & Javadi, Saeid, 2020. "Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment," Applied Energy, Elsevier, vol. 277(C).
    10. Amir, Vahid & Azimian, Mahdi, 2020. "Dynamic Multi-Carrier Microgrid Deployment Under Uncertainty," Applied Energy, Elsevier, vol. 260(C).
    11. Mehdizadeh, Ali & Taghizadegan, Navid & Salehi, Javad, 2018. "Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management," Applied Energy, Elsevier, vol. 211(C), pages 617-630.
    12. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).
    13. Liu, Yixin & Guo, Li & Wang, Chengshan, 2018. "A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids," Applied Energy, Elsevier, vol. 228(C), pages 130-140.
    14. Yeh, Wei-Chang & He, Min-Fan & Huang, Chia-Ling & Tan, Shi-Yi & Zhang, Xianyong & Huang, Yaohong & Li, Li, 2020. "New genetic algorithm for economic dispatch of stand-alone three-modular microgrid in DongAo Island," Applied Energy, Elsevier, vol. 263(C).
    15. Kou, Peng & Liang, Deliang & Gao, Lin, 2017. "Distributed EMPC of multiple microgrids for coordinated stochastic energy management," Applied Energy, Elsevier, vol. 185(P1), pages 939-952.
    16. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    17. Nikpour, Ahmad & Nateghi, Abolfazl & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Day-ahead optimal bidding of microgrids considering uncertainties of price and renewable energy resources," Energy, Elsevier, vol. 227(C).
    18. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2019. "A copula-based method to consider uncertainties for multi-objective energy management of microgrid in presence of demand response," Energy, Elsevier, vol. 175(C), pages 879-890.
    19. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    20. Yang, Dongfeng & Jiang, Chao & Cai, Guowei & Yang, Deyou & Liu, Xiaojun, 2020. "Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:229:y:2018:i:c:p:660-671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.