IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v242y2019icp809-820.html
   My bibliography  Save this article

A game theory-based decentralized control strategy for power demand management of building cluster using thermal mass and energy storage

Author

Listed:
  • Tang, Rui
  • Li, Hangxin
  • Wang, Shengwei

Abstract

The development of smart grids requires more active and effective participation of buildings in power balance. However, most of building demand management and demand response control strategies focus on single buildings only. For a group of buildings at cluster-level, which are often involved in an electricity charge account, such control strategies will not be effective. A game theory-based decentralized control strategy is therefore developed to address the demand management of cluster-level buildings. The indoor temperature set-point and the charging/discharging process of active cold storages in central air-conditioning systems are optimized simultaneously. Rather than optimizing the power demand of all buildings on a central optimization system, the proposed strategy optimizes the power demand of all buildings collectively in a decentralized manner. Using this strategy, buildings manage their own power demands locally only using the aggregated power demand of building cluster as the common reference for their demand controls. This distributed computing allows the optimization of large systems or complex optimization problems to be divided into a few simple optimization tasks, providing enhanced applicability and robustness in practical applications. Case studies are conducted and results show that the proposed game theory-based decentralized control strategy can increase the aggregated peak demand reduction and electricity cost saving more than two times compared with that when the demand management of building cluster is conducted in an uncoordinated manner. Meanwhile, the control performance of proposed decentralized strategy is close to that using a perfect demand management control strategy.

Suggested Citation

  • Tang, Rui & Li, Hangxin & Wang, Shengwei, 2019. "A game theory-based decentralized control strategy for power demand management of building cluster using thermal mass and energy storage," Applied Energy, Elsevier, vol. 242(C), pages 809-820.
  • Handle: RePEc:eee:appene:v:242:y:2019:i:c:p:809-820
    DOI: 10.1016/j.apenergy.2019.03.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919305616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steffan Berridge & Jacek Krawczyk, "undated". "Relaxation Algorithms in Finding Nash Equilibrium," Computing in Economics and Finance 1997 159, Society for Computational Economics.
    2. Lu, Yuehong & Wang, Shengwei & Sun, Yongjun & Yan, Chengchu, 2015. "Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming," Applied Energy, Elsevier, vol. 147(C), pages 49-58.
    3. Wang, Shengwei & Tang, Rui, 2017. "Supply-based feedback control strategy of air-conditioning systems for direct load control of buildings responding to urgent requests of smart grids," Applied Energy, Elsevier, vol. 201(C), pages 419-432.
    4. Klein, Konstantin & Herkel, Sebastian & Henning, Hans-Martin & Felsmann, Clemens, 2017. "Load shifting using the heating and cooling system of an office building: Quantitative potential evaluation for different flexibility and storage options," Applied Energy, Elsevier, vol. 203(C), pages 917-937.
    5. Iria, José & Soares, Filipe & Matos, Manuel, 2018. "Optimal supply and demand bidding strategy for an aggregator of small prosumers," Applied Energy, Elsevier, vol. 213(C), pages 658-669.
    6. Tang, Rui & Wang, Shengwei & Shan, Kui & Cheung, Howard, 2018. "Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting," Energy, Elsevier, vol. 151(C), pages 771-781.
    7. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    8. Reihani, Ehsan & Motalleb, Mahdi & Thornton, Matsu & Ghorbani, Reza, 2016. "A novel approach using flexible scheduling and aggregation to optimize demand response in the developing interactive grid market architecture," Applied Energy, Elsevier, vol. 183(C), pages 445-455.
    9. Su, Wencong & Huang, Alex Q., 2014. "A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers," Applied Energy, Elsevier, vol. 119(C), pages 341-350.
    10. Turner, W.J.N. & Walker, I.S. & Roux, J., 2015. "Peak load reductions: Electric load shifting with mechanical pre-cooling of residential buildings with low thermal mass," Energy, Elsevier, vol. 82(C), pages 1057-1067.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karthick Tamilarasu & Charles Raja Sathiasamuel & Jeslin Drusila Nesamalar Joseph & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2021. "Reinforced Demand Side Management for Educational Institution with Incorporation of User’s Comfort," Energies, MDPI, vol. 14(10), pages 1-22, May.
    2. Dong, Zihang & Zhang, Xi & Strbac, Goran, 2021. "Evaluation of benefits through coordinated control of numerous thermal energy storage in highly electrified heat systems," Energy, Elsevier, vol. 237(C).
    3. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    4. Song, Yuguang & Xia, Mingchao & Chen, Qifang, 2023. "The robust synchronization control scheme for flexible resources considering the stochastic and delay response process," Applied Energy, Elsevier, vol. 343(C).
    5. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    6. Rafael E. Carrillo & Antonis Peppas & Yves Stauffer & Chrysa Politi & Tomasz Gorecki & Pierre-Jean Alet, 2022. "A Multilevel Control Approach to Exploit Local Flexibility in Districts Evaluated under Real Conditions," Energies, MDPI, vol. 15(16), pages 1-17, August.
    7. Fang, Fang & Yu, Songyuan & Liu, Mingxi, 2020. "An improved Shapley value-based profit allocation method for CHP-VPP," Energy, Elsevier, vol. 213(C).
    8. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    9. Tang, Rui & Wang, Shengwei & Li, Hangxin, 2019. "Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids," Applied Energy, Elsevier, vol. 250(C), pages 118-130.
    10. Zhou, Huan & Fan, Shuai & Wu, Qing & Dong, Lianxin & Li, Zuyi & He, Guangyu, 2021. "Stimulus-response control strategy based on autonomous decentralized system theory for exploitation of flexibility by virtual power plant," Applied Energy, Elsevier, vol. 285(C).
    11. Eunjeong Choi & Soohwan Cho & Dong Keun Kim, 2020. "Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability," Sustainability, MDPI, vol. 12(3), pages 1-14, February.
    12. Li, Wenzhuo & Tang, Rui & Wang, Shengwei & Zheng, Zhuang, 2023. "An optimal design method for communication topology of wireless sensor networks to implement fully distributed optimal control in IoT-enabled smart buildings," Applied Energy, Elsevier, vol. 349(C).
    13. Chen, Yongbao & Xu, Peng & Chen, Zhe & Wang, Hongxin & Sha, Huajing & Ji, Ying & Zhang, Yongming & Dou, Qiang & Wang, Sheng, 2020. "Experimental investigation of demand response potential of buildings: Combined passive thermal mass and active storage," Applied Energy, Elsevier, vol. 280(C).
    14. Dong, Zihang & Zhang, Xi & Zhang, Linan & Giannelos, Spyros & Strbac, Goran, 2024. "Flexibility enhancement of urban energy systems through coordinated space heating aggregation of numerous buildings," Applied Energy, Elsevier, vol. 374(C).
    15. Luciana Marques & Wadaed Uturbey & Miguel Heleno, 2021. "An Integer Non-Cooperative Game Approach for the Transactive Control of Thermal Appliances in Energy Communities," Energies, MDPI, vol. 14(21), pages 1-22, October.
    16. Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
    17. Li, Wenzhuo & Wang, Shengwei, 2020. "A multi-agent based distributed approach for optimal control of multi-zone ventilation systems considering indoor air quality and energy use," Applied Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Rui & Wang, Shengwei, 2019. "Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids," Applied Energy, Elsevier, vol. 242(C), pages 873-882.
    2. Tang, Rui & Wang, Shengwei & Shan, Kui & Cheung, Howard, 2018. "Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting," Energy, Elsevier, vol. 151(C), pages 771-781.
    3. Tang, Rui & Wang, Shengwei & Li, Hangxin, 2019. "Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids," Applied Energy, Elsevier, vol. 250(C), pages 118-130.
    4. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    5. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    6. Monika Hall & Achim Geissler, 2021. "Comparison of Flexibility Factors and Introduction of A Flexibility Classification Using Advanced Heat Pump Control," Energies, MDPI, vol. 14(24), pages 1-19, December.
    7. Kang, Jing & Wang, Shengwei, 2018. "Robust optimal design of distributed energy systems based on life-cycle performance analysis using a probabilistic approach considering uncertainties of design inputs and equipment degradations," Applied Energy, Elsevier, vol. 231(C), pages 615-627.
    8. Motalleb, Mahdi & Ghorbani, Reza, 2017. "Non-cooperative game-theoretic model of demand response aggregator competition for selling stored energy in storage devices," Applied Energy, Elsevier, vol. 202(C), pages 581-596.
    9. Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
    10. Pied, Marie & Anjos, Miguel F. & Malhamé, Roland P., 2020. "A flexibility product for electric water heater aggregators on electricity markets," Applied Energy, Elsevier, vol. 280(C).
    11. Motalleb, Mahdi & Siano, Pierluigi & Ghorbani, Reza, 2019. "Networked Stackelberg Competition in a Demand Response Market," Applied Energy, Elsevier, vol. 239(C), pages 680-691.
    12. Chu, Wenfeng & Zhang, Yu & He, Wei & Zhang, Sheng & Hu, Zhongting & Ru, Bingqian & Ying, Shangxuan, 2023. "Research on flexible allocation strategy of power grid interactive buildings based on multiple optimization objectives," Energy, Elsevier, vol. 278(PB).
    13. Motalleb, Mahdi & Annaswamy, Anuradha & Ghorbani, Reza, 2018. "A real-time demand response market through a repeated incomplete-information game," Energy, Elsevier, vol. 143(C), pages 424-438.
    14. Marwan, Marwan, 2020. "The impact of probability of electricity price spike and outside temperature to define total expected cost for air conditioning," Energy, Elsevier, vol. 195(C).
    15. Kamyab, Farhad & Bahrami, Shahab, 2016. "Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets," Energy, Elsevier, vol. 106(C), pages 343-355.
    16. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    17. Axel Dreves & Christian Kanzow, 2011. "Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 50(1), pages 23-48, September.
    18. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    19. Flam, Sjur & Ruszczynski, A., 2006. "Computing Normalized Equilibria in Convex-Concave Games," Working Papers 2006:9, Lund University, Department of Economics.
    20. Mohammed A. Al-Ghamdi & Khalid S. Al-Gahtani, 2022. "Integrated Value Engineering and Life Cycle Cost Modeling for HVAC System Selection," Sustainability, MDPI, vol. 14(4), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:242:y:2019:i:c:p:809-820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.