IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v241y2019icp34-45.html
   My bibliography  Save this article

Modelling stratified thermal energy storage tanks using an advanced flowrate distribution of the received flow

Author

Listed:
  • Saloux, E.
  • Candanedo, J.A.

Abstract

Energy storage plays a central role in managing energy resources and demand. Among the numerous energy storage technologies, stratified storage tanks are a promising option, but their operation requires to be finely tuned in order to optimize their utilization. Accurate models are required to properly design and control such systems. In this paper, an advanced flowrate distribution of the flow entering the tank is developed for modelling stratified storage tanks based on a nodal approach. The model is calibrated and validated with the measurements of a 240-m3 water tank used in a solar community district heating system. The effects of the model parameters and the simulation time step on the model accuracy are also investigated and the selection of the optimal number of nodes must be carefully performed along with the simulation time step. Overall, the proposed model achieves better results than the traditional method and is suitable to be used in applications such as design optimization problems and model predictive control.

Suggested Citation

  • Saloux, E. & Candanedo, J.A., 2019. "Modelling stratified thermal energy storage tanks using an advanced flowrate distribution of the received flow," Applied Energy, Elsevier, vol. 241(C), pages 34-45.
  • Handle: RePEc:eee:appene:v:241:y:2019:i:c:p:34-45
    DOI: 10.1016/j.apenergy.2019.02.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919303721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    2. Dickinson, Ryan M. & Cruickshank, Cynthia A. & Harrison, Stephen J., 2013. "Charge and discharge strategies for a multi-tank thermal energy storage," Applied Energy, Elsevier, vol. 109(C), pages 366-373.
    3. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    4. Rad, Farzin M. & Fung, Alan S., 2016. "Solar community heating and cooling system with borehole thermal energy storage – Review of systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1550-1561.
    5. Candanedo, J.A. & Dehkordi, V.R. & Stylianou, M., 2013. "Model-based predictive control of an ice storage device in a building cooling system," Applied Energy, Elsevier, vol. 111(C), pages 1032-1045.
    6. Castell, A. & Medrano, M. & Solé, C. & Cabeza, L.F., 2010. "Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates," Renewable Energy, Elsevier, vol. 35(10), pages 2192-2199.
    7. Han, Y.M. & Wang, R.Z. & Dai, Y.J., 2009. "Thermal stratification within the water tank," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1014-1026, June.
    8. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    9. Lake, Andrew & Rezaie, Behanz, 2018. "Energy and exergy efficiencies assessment for a stratified cold thermal energy storage," Applied Energy, Elsevier, vol. 220(C), pages 605-615.
    10. Rahman, Aowabin & Smith, Amanda D., 2018. "Predicting heating demand and sizing a stratified thermal storage tank using deep learning algorithms," Applied Energy, Elsevier, vol. 228(C), pages 108-121.
    11. Al-Habaibeh, Amin & Shakmak, Bubaker & Fanshawe, Simon, 2018. "Assessment of a novel technology for a stratified hot water energy storage – The water snake," Applied Energy, Elsevier, vol. 222(C), pages 189-198.
    12. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saloux, Etienne & Runge, Jason & Zhang, Kun, 2023. "Operation optimization of multi-boiler district heating systems using artificial intelligence-based model predictive control: Field demonstrations," Energy, Elsevier, vol. 285(C).
    2. Lago, Jesus & De Ridder, Fjo & Mazairac, Wiet & De Schutter, Bart, 2019. "A 1-dimensional continuous and smooth model for thermally stratified storage tanks including mixing and buoyancy," Applied Energy, Elsevier, vol. 248(C), pages 640-655.
    3. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Rendall, Joseph & Abu-Heiba, Ahmad & Gluesenkamp, Kyle & Nawaz, Kashif & Worek, William & Elatar, Ahmed, 2021. "Nondimensional convection numbers modeling thermally stratified storage tanks: Richardson's number and hot-water tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Golmohamadi, Hessam, 2021. "Stochastic energy optimization of residential heat pumps in uncertain electricity markets," Applied Energy, Elsevier, vol. 303(C).
    6. Saloux, Etienne & Candanedo, José A., 2021. "Model-based predictive control to minimize primary energy use in a solar district heating system with seasonal thermal energy storage," Applied Energy, Elsevier, vol. 291(C).
    7. Untrau, Alix & Sochard, Sabine & Marias, Frédéric & Reneaume, Jean-Michel & Le Roux, Galo A.C. & Serra, Sylvain, 2023. "A fast and accurate 1-dimensional model for dynamic simulation and optimization of a stratified thermal energy storage," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    3. Untrau, Alix & Sochard, Sabine & Marias, Frédéric & Reneaume, Jean-Michel & Le Roux, Galo A.C. & Serra, Sylvain, 2023. "A fast and accurate 1-dimensional model for dynamic simulation and optimization of a stratified thermal energy storage," Applied Energy, Elsevier, vol. 333(C).
    4. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    6. Ciampi, Giovanni & Rosato, Antonio & Sibilio, Sergio, 2018. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage," Energy, Elsevier, vol. 143(C), pages 757-771.
    7. Rosato, Antonio & Ciervo, Antonio & Ciampi, Giovanni & Sibilio, Sergio, 2019. "Effects of solar field design on the energy, environmental and economic performance of a solar district heating network serving Italian residential and school buildings," Renewable Energy, Elsevier, vol. 143(C), pages 596-610.
    8. Bai, Yakai & Wang, Zhifeng & Fan, Jianhua & Yang, Ming & Li, Xiaoxia & Chen, Longfei & Yuan, Guofeng & Yang, Junfeng, 2020. "Numerical and experimental study of an underground water pit for seasonal heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 487-508.
    9. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    10. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    11. Szczęśniak, Arkadiusz & Milewski, Jarosław & Dybiński, Olaf & Futyma, Kamil & Skibiński, Jakub & Martsinchyk, Aliaksandr, 2023. "Dynamic simulation of a four tank 200 m3 seasonal thermal energy storage system oriented to air conditioning at a dietary supplements factory," Energy, Elsevier, vol. 264(C).
    12. Tulus, Victor & Abokersh, Mohamed Hany & Cabeza, Luisa F. & Vallès, Manel & Jiménez, Laureano & Boer, Dieter, 2019. "Economic and environmental potential for solar assisted central heating plants in the EU residential sector: Contribution to the 2030 climate and energy EU agenda," Applied Energy, Elsevier, vol. 236(C), pages 318-339.
    13. Osorio, J.D. & Rivera-Alvarez, A. & Swain, M. & Ordonez, J.C., 2015. "Exergy analysis of discharging multi-tank thermal energy storage systems with constant heat extraction," Applied Energy, Elsevier, vol. 154(C), pages 333-343.
    14. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    15. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Navarro, Lidia & de Gracia, Alvaro & Colclough, Shane & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems," Renewable Energy, Elsevier, vol. 88(C), pages 526-547.
    17. Zhang, Xingxing & Shen, Jingchun & Lu, Yan & He, Wei & Xu, Peng & Zhao, Xudong & Qiu, Zhongzhu & Zhu, Zishang & Zhou, Jinzhi & Dong, Xiaoqiang, 2015. "Active Solar Thermal Facades (ASTFs): From concept, application to research questions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 32-63.
    18. Wanruo Lou & Lingai Luo & Yuchao Hua & Yilin Fan & Zhenyu Du, 2021. "A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    19. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    20. Joseph Rendall & Fernando Karg Bulnes & Kyle Gluesenkamp & Ahmad Abu-Heiba & William Worek & Kashif Nawaz, 2021. "A Flow Rate Dependent 1D Model for Thermally Stratified Hot-Water Energy Storage," Energies, MDPI, vol. 14(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:241:y:2019:i:c:p:34-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.