IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp1062-1077.html
   My bibliography  Save this article

New frontiers in magnetic refrigeration with high oscillation energy-efficient electromagnets

Author

Listed:
  • Klinar, Katja
  • Tomc, Urban
  • Jelenc, Blaž
  • Nosan, Simon
  • Kitanovski, Andrej

Abstract

This article reports on the novel resistive electromagnetic field source with the magnetic energy recovery, which enables the use of the static magnetocaloric regenerator. Most of the existing prototype magnetocaloric devices that operate near room temperature, use magnetic field sources consisting of permanent magnets. The alternating of the magnetic field that is required for the thermodynamic cycle often comes from the rotation of magnets over the refrigerant, that is, an active magnetocaloric regenerator (AMR). Such systems require moving parts and a motor drive, both of which cause additional costs and reduced energy efficiency. Further restrictions in existing devices result from the speed of the magnetisation/ demagnetisation process, which is, in addition to efficient heat transfer, crucial for the compactness of the device. Another drawback is that the instant change of the magnetic field is not feasible, regardless of the principle of movement. Permanent-magnet assemblies based on neodymium are also constrained by the use of this rare-earth-material. Therefore, a number of global research activities relate to the optimization of permanent-magnet-based magnetic field sources. However, ohmic loss, the active cooling of magnets, and considerable energy consumption are the reasons why another type of magnetic field source, that is, the electromagnet, was generally avoided by the magnetocaloric community. This article presents a novel and unique approach that enables substantially improved energy efficiency and applicable operation of rare-earth-free and static electromagnetic field sources, by implementing for the first time the magnetic energy recovery for magnetic refrigeration and heat pumping. To prove the advantages of such a system, a large number of numerical simulations, as well as an experimental proof, were conducted. A comparative analysis was made for the evaluation of the energy efficiency of the proposed novel system vs an example of the existing rotating-magnet assembly. The results of this study reveal that this new type of electromagnetic field sources provides a number of different and important advantages that can lead to new frontiers in research. However, the energy efficiency is still lower than that of the comparable rotating-magnet assembly.

Suggested Citation

  • Klinar, Katja & Tomc, Urban & Jelenc, Blaž & Nosan, Simon & Kitanovski, Andrej, 2019. "New frontiers in magnetic refrigeration with high oscillation energy-efficient electromagnets," Applied Energy, Elsevier, vol. 236(C), pages 1062-1077.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:1062-1077
    DOI: 10.1016/j.apenergy.2018.12.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918318749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.12.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva, D.J. & Bordalo, B.D. & Pereira, A.M. & Ventura, J. & Araújo, J.P., 2012. "Solid state magnetic refrigerator," Applied Energy, Elsevier, vol. 93(C), pages 570-574.
    2. Trevizoli, Paulo V. & Nakashima, Alan T. & Peixer, Guilherme F. & Barbosa, Jader R., 2017. "Performance assessment of different porous matrix geometries for active magnetic regenerators," Applied Energy, Elsevier, vol. 187(C), pages 847-861.
    3. Gerke, Brian F. & McNeil, Michael A. & Tu, Thomas, 2017. "The International Database of Efficient Appliances (IDEA): A new tool to support appliance energy-efficiency deployment," Applied Energy, Elsevier, vol. 205(C), pages 453-464.
    4. Li, Yunhua & Liu, Mingsheng & Lau, Josephine & Zhang, Bei, 2015. "A novel method to determine the motor efficiency under variable speed operations and partial load conditions," Applied Energy, Elsevier, vol. 144(C), pages 234-240.
    5. Lozano, J.A. & Engelbrecht, K. & Bahl, C.R.H. & Nielsen, K.K. & Eriksen, D. & Olsen, U.L. & Barbosa, J.R. & Smith, A. & Prata, A.T. & Pryds, N., 2013. "Performance analysis of a rotary active magnetic refrigerator," Applied Energy, Elsevier, vol. 111(C), pages 669-680.
    6. de Almeida, Anibal T. & Fong, Joao & Falkner, Hugh & Bertoldi, Paolo, 2017. "Policy options to promote energy efficient electric motors and drives in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1275-1286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huayu Gao & Zheng Wei & Xiang Zhang & Pei Wang & Yuwei Lei & Hui Fu & Daming Zhou, 2023. "Optimum Design of a Reusable Spacecraft Launch System Using Electromagnetic Energy: An Artificial Intelligence GSO Algorithm," Energies, MDPI, vol. 16(23), pages 1-28, November.
    2. Ismail, A. & Perrin, M. & Giurgea, S. & Bailly, Y. & Roy, J.C. & Barriere, T., 2022. "Multiphysical and multidimensional modelling of Parallel-Plate active magnetic regenerator," Applied Energy, Elsevier, vol. 314(C).
    3. Angelo Maiorino & Antongiulio Mauro & Manuel Gesù Del Duca & Adrián Mota-Babiloni & Ciro Aprea, 2019. "Looking for Energy Losses of a Rotary Permanent Magnet Magnetic Refrigerator to Optimize Its Performances," Energies, MDPI, vol. 12(22), pages 1-21, November.
    4. Wieslaw Lyskawinski & Wojciech Szelag & Cezary Jedryczka & Tomasz Tolinski, 2021. "Finite Element Analysis of Magnetic Field Exciter for Direct Testing of Magnetocaloric Materials’ Properties," Energies, MDPI, vol. 14(10), pages 1-17, May.
    5. Zhao, Guimei & Geng, Yong & Wei, Wendong & Bleischwitz, Raimund & Ge, Zewen, 2023. "Assessing gadolinium resource efficiency and criticality in China," Resources Policy, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2018. "Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator," Energy, Elsevier, vol. 165(PA), pages 439-455.
    2. Ismail, A. & Perrin, M. & Giurgea, S. & Bailly, Y. & Roy, J.C. & Barriere, T., 2022. "Multiphysical and multidimensional modelling of Parallel-Plate active magnetic regenerator," Applied Energy, Elsevier, vol. 314(C).
    3. Silva, D.J. & Ventura, J. & Araújo, J.P. & Pereira, A.M., 2014. "Maximizing the temperature span of a solid state active magnetic regenerative refrigerator," Applied Energy, Elsevier, vol. 113(C), pages 1149-1154.
    4. Chdil, O. & Bikerouin, M. & Balli, M. & Mounkachi, O., 2023. "New horizons in magnetic refrigeration using artificial intelligence," Applied Energy, Elsevier, vol. 335(C).
    5. Kamran, Muhammad Sajid & Ahmad, Hafiz Ozair & Wang, Hua Sheng, 2020. "Review on the developments of active magnetic regenerator refrigerators – Evaluated by performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Burgos Payán, Manuel & Roldan Fernandez, Juan Manuel & Maza Ortega, Jose Maria & Riquelme Santos, Jesus Manuel, 2019. "Techno-economic optimal power rating of induction motors," Applied Energy, Elsevier, vol. 240(C), pages 1031-1048.
    7. Ali Alahmer & Malik Al-Amayreh & Ahmad O. Mostafa & Mohammad Al-Dabbas & Hegazy Rezk, 2021. "Magnetic Refrigeration Design Technologies: State of the Art and General Perspectives," Energies, MDPI, vol. 14(15), pages 1-26, July.
    8. Teyber, Reed & Holladay, Jamelyn & Meinhardt, Kerry & Polikarpov, Evgueni & Thomsen, Edwin & Cui, Jun & Rowe, Andrew & Barclay, John, 2019. "Performance investigation of a high-field active magnetic regenerator," Applied Energy, Elsevier, vol. 236(C), pages 426-436.
    9. Qian, Suxin & Yuan, Lifen & Yu, Jianlin & Yan, Gang, 2018. "Variable load control strategy for room-temperature magnetocaloric cooling applications," Energy, Elsevier, vol. 153(C), pages 763-775.
    10. Trevizoli, Paulo V. & Nakashima, Alan T. & Peixer, Guilherme F. & Barbosa, Jader R., 2017. "Performance assessment of different porous matrix geometries for active magnetic regenerators," Applied Energy, Elsevier, vol. 187(C), pages 847-861.
    11. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    12. Luca Cirillo & Adriana Greco & Claudia Masselli, 2023. "A Solid-to-Solid 2D Model of a Magnetocaloric Cooler with Thermal Diodes: A Sustainable Way for Refrigerating," Energies, MDPI, vol. 16(13), pages 1-17, July.
    13. Lei, Fei & Bai, Yingchun & Zhu, Wenhao & Liu, Jinhong, 2019. "A novel approach for electric powertrain optimization considering vehicle power performance, energy consumption and ride comfort," Energy, Elsevier, vol. 167(C), pages 1040-1050.
    14. Ruan, Jiageng & Walker, Paul & Zhang, Nong, 2016. "A comparative study energy consumption and costs of battery electric vehicle transmissions," Applied Energy, Elsevier, vol. 165(C), pages 119-134.
    15. Marek Turzyński & Michal Frivaldsky, 2020. "Modeling of a Quasi-Resonant DC Link Inverter Dedicated to Common-Mode Voltage and Ground Current Reduction," Energies, MDPI, vol. 13(19), pages 1-22, September.
    16. Elzbieta Szychta & Leszek Szychta, 2021. "Collective Losses of Low Power Cage Induction Motors—A New Approach," Energies, MDPI, vol. 14(6), pages 1-19, March.
    17. Kristina Navickaitė & Michael Penzel & Christian Bahl & Kurt Engelbrecht & Jaka Tušek & André Martin & Mike Zinecker & Andreas Schubert, 2020. "CFD-Simulation Assisted Design of Elastocaloric Regenerator Geometry," Sustainability, MDPI, vol. 12(21), pages 1-16, October.
    18. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).
    19. Hosain, Md Lokman & Bel Fdhila, Rebei & Rönnberg, Kristian, 2017. "Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines," Applied Energy, Elsevier, vol. 207(C), pages 624-633.
    20. Danilo Ferreira de Souza & Francisco Antônio Marino Salotti & Ildo Luís Sauer & Hédio Tatizawa & Aníbal Traça de Almeida & Arnaldo Gakiya Kanashiro, 2022. "A Performance Evaluation of Three-Phase Induction Electric Motors between 1945 and 2020," Energies, MDPI, vol. 15(6), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:1062-1077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.