IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp570-574.html
   My bibliography  Save this article

Solid state magnetic refrigerator

Author

Listed:
  • Silva, D.J.
  • Bordalo, B.D.
  • Pereira, A.M.
  • Ventura, J.
  • Araújo, J.P.

Abstract

The viability and operation of a fully solid state magnetic refrigeration system with envisaged applications on chip, sensor and device cooling is here tested using numerical simulations. The proposed system relies on the combined use of materials displaying the magnetocaloric effect and of materials whose thermal conductivities are controlled by an external magnetic field. This allows the switching of the heat flow direction in sync with the temperature variation of the magnetocaloric material, removing the necessity to use fluids which has for long hindered the implementation of magnetic refrigeration. We have found the optimum operating conditions of the proposed refrigerator, for which a cooling power density of ∼2.75Wcm−2 was obtained for an operating temperature of ∼296K, using Gadolinium as the magnetocaloric material and an applied magnetic field of 1T. The coefficient of performance (COP) achieved by this refrigerator was found to be COP ∼1.5, making it a viable alternative to thermoelectric refrigeration.

Suggested Citation

  • Silva, D.J. & Bordalo, B.D. & Pereira, A.M. & Ventura, J. & Araújo, J.P., 2012. "Solid state magnetic refrigerator," Applied Energy, Elsevier, vol. 93(C), pages 570-574.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:570-574
    DOI: 10.1016/j.apenergy.2011.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911007963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yamashita, Osamu, 2011. "Effect of interface layer on the cooling performance of a single thermoelement," Applied Energy, Elsevier, vol. 88(9), pages 3022-3029.
    2. Min, Gao & Rowe, D.M., 2006. "Experimental evaluation of prototype thermoelectric domestic-refrigerators," Applied Energy, Elsevier, vol. 83(2), pages 133-152, February.
    3. Aprea, Ciro & Maiorino, Angelo, 2010. "A flexible numerical model to study an active magnetic refrigerator for near room temperature applications," Applied Energy, Elsevier, vol. 87(8), pages 2690-2698, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klinar, Katja & Tomc, Urban & Jelenc, Blaž & Nosan, Simon & Kitanovski, Andrej, 2019. "New frontiers in magnetic refrigeration with high oscillation energy-efficient electromagnets," Applied Energy, Elsevier, vol. 236(C), pages 1062-1077.
    2. Suganthi, K.S. & Leela Vinodhan, V. & Rajan, K.S., 2014. "Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants," Applied Energy, Elsevier, vol. 135(C), pages 548-559.
    3. Lozano, J.A. & Engelbrecht, K. & Bahl, C.R.H. & Nielsen, K.K. & Eriksen, D. & Olsen, U.L. & Barbosa, J.R. & Smith, A. & Prata, A.T. & Pryds, N., 2013. "Performance analysis of a rotary active magnetic refrigerator," Applied Energy, Elsevier, vol. 111(C), pages 669-680.
    4. Fernandes, C.R. & Silva, D.J. & Pereira, A.M. & Ventura, J.O., 2022. "Numerical simulation and optimization of a solid state thermal diode based on shape-memory alloys," Energy, Elsevier, vol. 255(C).
    5. Silva, D.J. & Ventura, J. & Araújo, J.P. & Pereira, A.M., 2014. "Maximizing the temperature span of a solid state active magnetic regenerative refrigerator," Applied Energy, Elsevier, vol. 113(C), pages 1149-1154.
    6. Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2018. "Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator," Energy, Elsevier, vol. 165(PA), pages 439-455.
    7. Klinar, K. & Kitanovski, A., 2020. "Thermal control elements for caloric energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    8. Trevizoli, Paulo V. & Nakashima, Alan T. & Peixer, Guilherme F. & Barbosa, Jader R., 2017. "Performance assessment of different porous matrix geometries for active magnetic regenerators," Applied Energy, Elsevier, vol. 187(C), pages 847-861.
    9. Chdil, O. & Bikerouin, M. & Balli, M. & Mounkachi, O., 2023. "New horizons in magnetic refrigeration using artificial intelligence," Applied Energy, Elsevier, vol. 335(C).
    10. Zhang, Yaokang & Wu, Jianghong & He, Jing & Wang, Kai & Yu, Guoxin, 2021. "Solutions to obstacles in the commercialization of room-temperature magnetic refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Luca Cirillo & Adriana Greco & Claudia Masselli, 2023. "A Solid-to-Solid 2D Model of a Magnetocaloric Cooler with Thermal Diodes: A Sustainable Way for Refrigerating," Energies, MDPI, vol. 16(13), pages 1-17, July.
    12. Zhang, Jiongjiong & Zhu, Yuxiang & Cheng, Siyuan & Yao, Shuhuai & Sun, Qingping, 2023. "Effect of inactive section on cooling performance of compressive elastocaloric refrigeration prototype," Applied Energy, Elsevier, vol. 351(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, D.J. & Ventura, J. & Araújo, J.P. & Pereira, A.M., 2014. "Maximizing the temperature span of a solid state active magnetic regenerative refrigerator," Applied Energy, Elsevier, vol. 113(C), pages 1149-1154.
    2. He, Wei & Zhou, Jinzhi & Hou, Jingxin & Chen, Chi & Ji, Jie, 2013. "Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar," Applied Energy, Elsevier, vol. 107(C), pages 89-97.
    3. Hermes, Christian J.L. & Barbosa, Jader R., 2012. "Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers," Applied Energy, Elsevier, vol. 91(1), pages 51-58.
    4. Ismail, A. & Perrin, M. & Giurgea, S. & Bailly, Y. & Roy, J.C. & Barriere, T., 2022. "Multiphysical and multidimensional modelling of Parallel-Plate active magnetic regenerator," Applied Energy, Elsevier, vol. 314(C).
    5. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    6. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    7. Afshari, Faraz & Mandev, Emre & Muratçobanoğlu, Burak & Yetim, Ali Fatih & Ceviz, Mehmet Akif, 2023. "Experimental and numerical study on a novel fanless air-to-air solar thermoelectric refrigerator equipped with boosted heat exchanger," Renewable Energy, Elsevier, vol. 207(C), pages 253-265.
    8. Kefayati, G.H.R., 2016. "Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part II: ," Energy, Elsevier, vol. 107(C), pages 917-959.
    9. Lozano, J.A. & Engelbrecht, K. & Bahl, C.R.H. & Nielsen, K.K. & Eriksen, D. & Olsen, U.L. & Barbosa, J.R. & Smith, A. & Prata, A.T. & Pryds, N., 2013. "Performance analysis of a rotary active magnetic refrigerator," Applied Energy, Elsevier, vol. 111(C), pages 669-680.
    10. Zhao, Guimei & Geng, Yong & Wei, Wendong & Bleischwitz, Raimund & Ge, Zewen, 2023. "Assessing gadolinium resource efficiency and criticality in China," Resources Policy, Elsevier, vol. 80(C).
    11. Kefayati, G.H.R., 2016. "Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (Part I: S," Energy, Elsevier, vol. 107(C), pages 889-916.
    12. Siviter, J. & Montecucco, A. & Knox, A.R., 2015. "Rankine cycle efficiency gain using thermoelectric heat pumps," Applied Energy, Elsevier, vol. 140(C), pages 161-170.
    13. Diaz-Londono, Cesar & Enescu, Diana & Ruiz, Fredy & Mazza, Andrea, 2020. "Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads," Applied Energy, Elsevier, vol. 272(C).
    14. Kamran, Muhammad Sajid & Ahmad, Hafiz Ozair & Wang, Hua Sheng, 2020. "Review on the developments of active magnetic regenerator refrigerators – Evaluated by performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    15. Oswaldo Hideo Ando Junior & Nelson H. Calderon & Samara Silva De Souza, 2018. "Characterization of a Thermoelectric Generator (TEG) System for Waste Heat Recovery," Energies, MDPI, vol. 11(6), pages 1-13, June.
    16. Rui Miao & Xiaoou Hu & Yao Yu & Qifeng Zhang & Zhibin Lin & Abdulaziz Banawi & Ahmed Cherif Megri, 2021. "Experimental Study to Analyze Feasibility of a Novel Panelized Ground-Source Thermoelectric System for Building Space Heating and Cooling," Energies, MDPI, vol. 15(1), pages 1-17, December.
    17. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    18. Martínez, A. & Astrain, D. & Rodríguez, A., 2011. "Experimental and analytical study on thermoelectric self cooling of devices," Energy, Elsevier, vol. 36(8), pages 5250-5260.
    19. Irshad, Kashif & Habib, Khairul & Basrawi, Firdaus & Saha, Bidyut Baran, 2017. "Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate," Energy, Elsevier, vol. 119(C), pages 504-522.
    20. Lee, Dongkeon & Park, Hwanjoo & Park, Gimin & Kim, Jiyong & Kim, Hoon & Cho, Hanki & Han, Seungwoo & Kim, Woochul, 2019. "Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:570-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.