IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2792-d553495.html
   My bibliography  Save this article

Finite Element Analysis of Magnetic Field Exciter for Direct Testing of Magnetocaloric Materials’ Properties

Author

Listed:
  • Wieslaw Lyskawinski

    (Institute of Electrical Engineering and Electronics, Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland)

  • Wojciech Szelag

    (Institute of Electrical Engineering and Electronics, Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland)

  • Cezary Jedryczka

    (Institute of Electrical Engineering and Electronics, Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland)

  • Tomasz Tolinski

    (Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznan, Poland)

Abstract

The paper presents research on magnetic field exciters dedicated to testing magnetocaloric materials (MCMs) as well as used in the design process of magnetic refrigeration systems. An important element of the proposed test stand is the system of magnetic field excitation. It should provide a homogeneous magnetic field with a controllable value of its intensity in the MCM testing region. Several concepts of a magnetic circuit when designing the field exciters have been proposed and evaluated. In the MCM testing region of the proposed exciters, the magnetic field is controlled by changing the structure of the magnetic circuit. A precise 3D field model of electromagnetic phenomena has been developed in the professional finite element method (FEM) package and used to design and analyze the exciters. The obtained results of the calculations of the magnetic field distribution in the working area were compared with the results of the measurements carried out on the exciter prototype. The conclusions resulting from the conducted research are presented and discussed.

Suggested Citation

  • Wieslaw Lyskawinski & Wojciech Szelag & Cezary Jedryczka & Tomasz Tolinski, 2021. "Finite Element Analysis of Magnetic Field Exciter for Direct Testing of Magnetocaloric Materials’ Properties," Energies, MDPI, vol. 14(10), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2792-:d:553495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klinar, Katja & Tomc, Urban & Jelenc, Blaž & Nosan, Simon & Kitanovski, Andrej, 2019. "New frontiers in magnetic refrigeration with high oscillation energy-efficient electromagnets," Applied Energy, Elsevier, vol. 236(C), pages 1062-1077.
    2. Roman Gozdur & Piotr Gębara & Krzysztof Chwastek, 2020. "A Study of Temperature-Dependent Hysteresis Curves for a Magnetocaloric Composite Based on La(Fe, Mn, Si) 13 -H Type Alloys," Energies, MDPI, vol. 13(6), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismail, A. & Perrin, M. & Giurgea, S. & Bailly, Y. & Roy, J.C. & Barriere, T., 2022. "Multiphysical and multidimensional modelling of Parallel-Plate active magnetic regenerator," Applied Energy, Elsevier, vol. 314(C).
    2. Zhao, Guimei & Geng, Yong & Wei, Wendong & Bleischwitz, Raimund & Ge, Zewen, 2023. "Assessing gadolinium resource efficiency and criticality in China," Resources Policy, Elsevier, vol. 80(C).
    3. Dejana Herceg & Krzysztof Chwastek & Đorđe Herceg, 2020. "The Use of Hypergeometric Functions in Hysteresis Modeling," Energies, MDPI, vol. 13(24), pages 1-14, December.
    4. Anna Przybył & Piotr Gębara & Roman Gozdur & Krzysztof Chwastek, 2022. "Modeling of Magnetic Properties of Rare-Earth Hard Magnets," Energies, MDPI, vol. 15(21), pages 1-18, October.
    5. Angelo Maiorino & Antongiulio Mauro & Manuel Gesù Del Duca & Adrián Mota-Babiloni & Ciro Aprea, 2019. "Looking for Energy Losses of a Rotary Permanent Magnet Magnetic Refrigerator to Optimize Its Performances," Energies, MDPI, vol. 12(22), pages 1-21, November.
    6. Huayu Gao & Zheng Wei & Xiang Zhang & Pei Wang & Yuwei Lei & Hui Fu & Daming Zhou, 2023. "Optimum Design of a Reusable Spacecraft Launch System Using Electromagnetic Energy: An Artificial Intelligence GSO Algorithm," Energies, MDPI, vol. 16(23), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2792-:d:553495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.