IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v235y2019icp714-728.html
   My bibliography  Save this article

The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction

Author

Listed:
  • Hietala, David C.
  • Godwin, Casey M.
  • Cardinale, Bradley J.
  • Savage, Phillip E.

Abstract

We examined the independent and coupled effects of temperature (150–350 °C), reaction time (1–100 min), slurry concentration (30 and 120 g Lrxn-1), biochemical composition (5.2–28.5 wt% lipid, 14.7–50.9 wt% protein), and species identity (Nannochloropsis, Chlorella, and Spirulina) on the yield and composition of biocrude oil produced by hydrothermal liquefaction. Measured properties included gravimetric yield, elemental (C, H, N, S, O, and P) composition and recovery, higher-heating value and energy recovery, and fatty-acid profile, content, and recovery. All examined factors affect the yield and composition of the biocrude, with biochemical composition and temperature exhibiting the greatest impacts. We probed the effects of slurry concentration and species identity over numerous combinations of temperature, reaction time, and biochemical composition that were previously unexamined, demonstrating the effects of both slurry concentration and species identity to be of the same order of magnitude as reaction time. Increased slurry concentration appears to promote Maillard reactions that result in increased biocrude yield, C content, and N content and decreased O content. Moreover, the extent of these Maillard reactions may be affected by the ratio of proteins to carbohydrates, with carbohydrates serving as the limiting reactant. High-lipid, 30 g Lrxn-1 slurries reacted at 300 °C for 3.2 min (including 1 min heat-up) generally yielded more biocrude with higher C and H content and lower N, S, and O content than did their high-protein, 120 g Lrxn-1, 200 °C, or 31.6 min counterparts. This condition also provided recoveries of saturated, monounsaturated, and polyunsaturated fatty acids in the biocrude of up to 89.3, 80.1, and 64.7 wt%, respectively, demonstrating for the first time that fast hydrothermal liquefaction can be an effective means of recovering high-value unsaturated fatty acids. The results and expansive experimental data herein provide a deeper level of understanding for microalgal hydrothermal liquefaction, enabling a greater extent of reaction engineering for the process than previously possible.

Suggested Citation

  • Hietala, David C. & Godwin, Casey M. & Cardinale, Bradley J. & Savage, Phillip E., 2019. "The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction," Applied Energy, Elsevier, vol. 235(C), pages 714-728.
  • Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:714-728
    DOI: 10.1016/j.apenergy.2018.10.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918316738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.10.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhatnagar, Ashish & Chinnasamy, Senthil & Singh, Manjinder & Das, K.C., 2011. "Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters," Applied Energy, Elsevier, vol. 88(10), pages 3425-3431.
    2. Chen, Wan-Ting & Zhang, Yuanhui & Zhang, Jixiang & Schideman, Lance & Yu, Guo & Zhang, Peng & Minarick, Mitchell, 2014. "Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil," Applied Energy, Elsevier, vol. 128(C), pages 209-216.
    3. Cheng, Feng & Cui, Zheng & Chen, Lin & Jarvis, Jacqueline & Paz, Neil & Schaub, Tanner & Nirmalakhandan, Nagamany & Brewer, Catherine E., 2017. "Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry," Applied Energy, Elsevier, vol. 206(C), pages 278-292.
    4. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    5. Yang, Jie & He, Quan (Sophia) & Niu, Haibo & Corscadden, Kenneth & Astatkie, Tess, 2018. "Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration," Applied Energy, Elsevier, vol. 228(C), pages 1618-1628.
    6. Reddy, Harvind Kumar & Muppaneni, Tapaswy & Ponnusamy, Sundaravadivelnathan & Sudasinghe, Nilusha & Pegallapati, Ambica & Selvaratnam, Thinesh & Seger, Mark & Dungan, Barry & Nirmalakhandan, Nagamany , 2016. "Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp," Applied Energy, Elsevier, vol. 165(C), pages 943-951.
    7. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Rizzo, Andrea Maria & Pari, Luigi, 2017. "Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production," Applied Energy, Elsevier, vol. 185(P2), pages 963-972.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makoto M. Watanabe & Andreas Isdepsky, 2021. "Biocrude Oil Production by Integrating Microalgae Polyculture and Wastewater Treatment: Novel Proposal on the Use of Deep Water-Depth Polyculture of Mixotrophic Microalgae," Energies, MDPI, vol. 14(21), pages 1-29, October.
    2. Moreno-Sader, K. & Meramo-Hurtado, S.I. & González-Delgado, A.D., 2019. "Computer-aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 42-57.
    3. Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammed & Thaher, Mahmoud Ibrahim & Hawari, Alaa H. & Alshamri, Noora & AlGhasal, Ghamza & Al-Jabri, Hareb M.J., 2023. "Biocrude oil production from a self-settling marine cyanobacterium, Chroococcidiopsis sp., using a biorefinery approach," Renewable Energy, Elsevier, vol. 203(C), pages 1-9.
    4. Gu, X. & Martinez-Fernandez, J.S. & Pang, N. & Fu, X. & Chen, S., 2020. "Recent development of hydrothermal liquefaction for algal biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Zhao, Kaige & Li, Wanqing & Yu, Yingying & Chen, Guanyi & Yan, Beibei & Cheng, Zhanjun & Zhao, Hai & Fang, Yang, 2023. "Speciation and transformation of nitrogen in the hydrothermal liquefaction of wastewater-treated duckweed for the bio-oil production," Renewable Energy, Elsevier, vol. 204(C), pages 661-670.
    6. Xu, Donghai & Guo, Shuwei & Liu, Liang & Lin, Guike & Wu, Zhiqiang & Guo, Yang & Wang, Shuzhong, 2019. "Heterogeneous catalytic effects on the characteristics of water-soluble and water-insoluble biocrudes in chlorella hydrothermal liquefaction," Applied Energy, Elsevier, vol. 243(C), pages 165-174.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
    2. Chen, Xinfei & Ma, Xiaoqian & Zeng, Xianghao & Zheng, Chupeng & Lu, Xiaoluan, 2020. "Ethanol addition during aqueous phase recirculation for further improving bio-oil yield and quality," Applied Energy, Elsevier, vol. 262(C).
    3. SundarRajan, P. & Gopinath, K.P. & Arun, J. & GracePavithra, K. & Adithya Joseph, A. & Manasa, S., 2021. "Insights into valuing the aqueous phase derived from hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Xu, Donghai & Guo, Shuwei & Liu, Liang & Lin, Guike & Wu, Zhiqiang & Guo, Yang & Wang, Shuzhong, 2019. "Heterogeneous catalytic effects on the characteristics of water-soluble and water-insoluble biocrudes in chlorella hydrothermal liquefaction," Applied Energy, Elsevier, vol. 243(C), pages 165-174.
    5. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    6. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    7. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    8. Collett, James R. & Billing, Justin M. & Meyer, Pimphan A. & Schmidt, Andrew J. & Remington, A. Brook & Hawley, Erik R. & Hofstad, Beth A. & Panisko, Ellen A. & Dai, Ziyu & Hart, Todd R. & Santosa, Da, 2019. "Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover," Applied Energy, Elsevier, vol. 233, pages 840-853.
    9. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    11. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    12. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    13. Wu, Wei & Wang, Po-Han & Lee, Duu-Jong & Chang, Jo-Shu, 2017. "Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions," Applied Energy, Elsevier, vol. 197(C), pages 63-82.
    14. Aljabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mahmoud & Hawari, Alaa H. & Al-Shamary, Noora Mahmoud, 2022. "A study to investigate the energy recovery potential from different macromolecules of a low-lipid marine Tetraselmis sp. biomass through HTL process," Renewable Energy, Elsevier, vol. 189(C), pages 78-89.
    15. Sun, Zhe & Zhou, Zhi, 2019. "Nature-inspired virus-assisted algal cell disruption for cost-effective biofuel production," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    17. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    18. Rahbari, Alireza & Shirazi, Alec & Venkataraman, Mahesh B. & Pye, John, 2021. "Solar fuels from supercritical water gasification of algae: Impacts of low-cost hydrogen on reformer configurations," Applied Energy, Elsevier, vol. 288(C).
    19. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    20. Zhang, Bo & Chen, Jixiang & Kandasamy, Sabariswaran & He, Zhixia, 2020. "Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:235:y:2019:i:c:p:714-728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.