IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v2y2017i11d10.1038_s41560-017-0028-5.html
   My bibliography  Save this article

Efficient kesterite solar cells with high open-circuit voltage for applications in powering distributed devices

Author

Listed:
  • Priscilla D. Antunez

    (IBM T.J. Watson Research Center
    Argonne National Laboratory)

  • Douglas M. Bishop

    (IBM T.J. Watson Research Center)

  • Yu Luo

    (IBM T.J. Watson Research Center)

  • Richard Haight

    (IBM T.J. Watson Research Center)

Abstract

Simultaneously achieving high voltage and high efficiency in thin-film solar cells is of paramount importance for real-world applications. While solar cells fabricated from the Earth-abundant kesterite absorber Cu2ZnSn(S x Se1−x )4 provide an attractive, non-toxic, energy harvesting solution, their utilization has been constrained by relatively low open-circuit voltages that limit efficiency. Increasing the sulfur content to widen the bandgap boosts the voltage, but usually at the expense of efficiency. Here, we report important progress on this fundamental problem by fabricating solar cells with high sulfur content that exhibit efficiencies up to 11.89% with open-circuit voltages as high as 670 mV. In a multistep process, fully functional solar cells are separated from their growth substrate, and a high-work-function back contact is subsequently deposited. With this approach, we fabricated a series-connected device that produces 5.7 V under 1 Sun illumination and ~2 V under low lighting conditions, below 10−3 Suns.

Suggested Citation

  • Priscilla D. Antunez & Douglas M. Bishop & Yu Luo & Richard Haight, 2017. "Efficient kesterite solar cells with high open-circuit voltage for applications in powering distributed devices," Nature Energy, Nature, vol. 2(11), pages 884-890, November.
  • Handle: RePEc:nat:natene:v:2:y:2017:i:11:d:10.1038_s41560-017-0028-5
    DOI: 10.1038/s41560-017-0028-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-017-0028-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-017-0028-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul Rehman Yasin & Muhammad Ashraf & Aamer Iqbal Bhatti, 2018. "Fixed Frequency Sliding Mode Control of Power Converters for Improved Dynamic Response in DC Micro-Grids," Energies, MDPI, vol. 11(10), pages 1-18, October.
    2. Zhang, Zeyu & Hanrahan, Brendan & Shi, Chuan & Khaligh, Alireza, 2018. "Management and storage of energy converted via a pyroelectric heat engine," Applied Energy, Elsevier, vol. 230(C), pages 1326-1331.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:2:y:2017:i:11:d:10.1038_s41560-017-0028-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.