IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v180y2016icp472-482.html
   My bibliography  Save this article

A simulation framework for prediction of thermoelectric generator system performance

Author

Listed:
  • Högblom, Olle
  • Andersson, Ronnie

Abstract

This paper presents a novel framework for characterization and simulation of thermoelectric generator systems that allows accurate and efficient prediction of electric and thermal performance at steady state conditions. The simulation framework relies on regression analysis of single thermoelectric modules including voltage, current, temperatures and heat flow. A physical description of the main phenomena is included in models and enables accurate prediction of module performance over large ranges in temperature and current. Moreover it allows a system of modules electrically connected to be analyzed and used together with fluid dynamics simulations. When used in conjunction with CFD analysis it allows efficient modeling of electrical and thermal performance by simultaneous solution of the coupled equations for energy transport and thermoelectric power generation. This efficiency comes from the fact the modeling does not require full resolution as first principle simulations does. Therefore it solves the scale separation problem and allows multiphysics simulation with just a minor increase in computational power.

Suggested Citation

  • Högblom, Olle & Andersson, Ronnie, 2016. "A simulation framework for prediction of thermoelectric generator system performance," Applied Energy, Elsevier, vol. 180(C), pages 472-482.
  • Handle: RePEc:eee:appene:v:180:y:2016:i:c:p:472-482
    DOI: 10.1016/j.apenergy.2016.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916311060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Py, Xavier & Azoumah, Yao & Olives, Régis, 2013. "Concentrated solar power: Current technologies, major innovative issues and applicability to West African countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 306-315.
    2. Champier, D. & Bédécarrats, J.P. & Kousksou, T. & Rivaletto, M. & Strub, F. & Pignolet, P., 2011. "Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove," Energy, Elsevier, vol. 36(3), pages 1518-1526.
    3. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
    4. Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R., 2014. "The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel," Applied Energy, Elsevier, vol. 123(C), pages 47-54.
    5. He, Wei & Su, Yuehong & Riffat, S.B. & Hou, JinXin & Ji, Jie, 2011. "Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit," Applied Energy, Elsevier, vol. 88(12), pages 5083-5089.
    6. Montecucco, Andrea & Knox, Andrew R., 2014. "Accurate simulation of thermoelectric power generating systems," Applied Energy, Elsevier, vol. 118(C), pages 166-172.
    7. Yu, Shuhai & Du, Qing & Diao, Hai & Shu, Gequn & Jiao, Kui, 2015. "Start-up modes of thermoelectric generator based on vehicle exhaust waste heat recovery," Applied Energy, Elsevier, vol. 138(C), pages 276-290.
    8. Zhang, Ming & Miao, Lei & Kang, Yi Pu & Tanemura, Sakae & Fisher, Craig A.J. & Xu, Gang & Li, Chun Xin & Fan, Guang Zhu, 2013. "Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules," Applied Energy, Elsevier, vol. 109(C), pages 51-59.
    9. Suter, C. & Jovanovic, Z.R. & Steinfeld, A., 2012. "A 1kWe thermoelectric stack for geothermal power generation – Modeling and geometrical optimization," Applied Energy, Elsevier, vol. 99(C), pages 379-385.
    10. Cheng, Chin-Hsiang & Huang, Shu-Yu, 2012. "Development of a non-uniform-current model for predicting transient thermal behavior of thermoelectric coolers," Applied Energy, Elsevier, vol. 100(C), pages 326-335.
    11. Ji, Jie & Lu, Jian-Ping & Chow, Tin-Tai & He, Wei & Pei, Gang, 2007. "A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation," Applied Energy, Elsevier, vol. 84(2), pages 222-237, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwan, Trevor Hocksun & Zhao, Bin & Liu, Jie & Pei, Gang, 2020. "Performance analysis of the sky radiative and thermoelectric hybrid cooling system," Energy, Elsevier, vol. 200(C).
    2. Lineykin, Simon & Maslah, Kareem & Kuperman, Alon, 2020. "Manufacturer-data-only-based modeling and optimized design of thermoelectric harvesters operating at low temperature gradients," Energy, Elsevier, vol. 213(C).
    3. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
    4. Benday, Naman S. & Dryden, Daniel M. & Kornbluth, Kurt & Stroeve, Pieter, 2017. "A temperature-variant method for performance modeling and economic analysis of thermoelectric generators: Linking material properties to real-world conditions," Applied Energy, Elsevier, vol. 190(C), pages 764-771.
    5. Chetty, Raju & Nagase, Kazuo & Aihara, Makoto & Jood, Priyanka & Takazawa, Hiroyuki & Ohta, Michihiro & Yamamoto, Atsushi, 2020. "Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing," Applied Energy, Elsevier, vol. 260(C).
    6. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Bidirectional operation of the thermoelectric device for active temperature control of fuel cells," Applied Energy, Elsevier, vol. 222(C), pages 410-422.
    7. Deasy, M.J. & Baudin, N. & O'Shaughnessy, S.M. & Robinson, A.J., 2017. "Simulation-driven design of a passive liquid cooling system for a thermoelectric generator," Applied Energy, Elsevier, vol. 205(C), pages 499-510.
    8. Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
    9. Kwan, Trevor Hocksun & Shen, Yongting & Yao, Qinghe, 2019. "An energy management strategy for supplying combined heat and power by the fuel cell thermoelectric hybrid system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Young Hoo Cho & Jaehyun Park & Naehyuck Chang & Jaemin Kim, 2020. "Comparison of Cooling Methods for a Thermoelectric Generator with Forced Convection," Energies, MDPI, vol. 13(12), pages 1-19, June.
    11. Nour Eddine, A. & Chalet, D. & Faure, X. & Aixala, L. & Chessé, P., 2018. "Optimization and characterization of a thermoelectric generator prototype for marine engine application," Energy, Elsevier, vol. 143(C), pages 682-695.
    12. Huang, Shouyuan & Xu, Xianfan, 2017. "A regenerative concept for thermoelectric power generation," Applied Energy, Elsevier, vol. 185(P1), pages 119-125.
    13. Yuan, Hengfeng & Qing, Shaowei & Ren, Shangkun & Rezania, Alireza & Rosendahl, Lasse & Wen, Xiankui & Zhong, Jingliang & Gou, Xiaolong & Tang, Shengli & E, Peng, 2023. "Modelling and optimization analysis of a novel hollow flexible-filler-based bulk thermoelectric generator for human body sensor," Energy, Elsevier, vol. 281(C).
    14. Olle Högblom & Ronnie Andersson, 2020. "Multiphysics CFD Simulation for Design and Analysis of Thermoelectric Power Generation," Energies, MDPI, vol. 13(17), pages 1-15, August.
    15. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Mao, Zhengsong, 2023. "Performance analysis of diesel particulate filter thermoelectric conversion mobile energy storage system under engine conditions of low-speed and light-load," Energy, Elsevier, vol. 282(C).
    16. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
    17. Pourhedayat, Samira, 2018. "Application of thermoelectric as an instant running-water cooler; experimental study under different operating conditions," Applied Energy, Elsevier, vol. 229(C), pages 364-374.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olle Högblom & Ronnie Andersson, 2020. "Multiphysics CFD Simulation for Design and Analysis of Thermoelectric Power Generation," Energies, MDPI, vol. 13(17), pages 1-15, August.
    2. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    3. Liu, Yi-Hua & Chiu, Yi-Hsun & Huang, Jia-Wei & Wang, Shun-Chung, 2016. "A novel maximum power point tracker for thermoelectric generation system," Renewable Energy, Elsevier, vol. 97(C), pages 306-318.
    4. Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R., 2015. "Constant heat characterisation and geometrical optimisation of thermoelectric generators," Applied Energy, Elsevier, vol. 149(C), pages 248-258.
    5. Montecucco, Andrea & Knox, Andrew R., 2014. "Accurate simulation of thermoelectric power generating systems," Applied Energy, Elsevier, vol. 118(C), pages 166-172.
    6. Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
    7. Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R., 2014. "The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel," Applied Energy, Elsevier, vol. 123(C), pages 47-54.
    8. Ricardo Marroquín-Arreola & Jinmi Lezama & Héctor Ricardo Hernández-De León & Julio César Martínez-Romo & José Antonio Hoyo-Montaño & Jorge Luis Camas-Anzueto & Elías Neftalí Escobar-Gómez & Jorge Eva, 2022. "Design of an MPPT Technique for the Indirect Measurement of the Open-Circuit Voltage Applied to Thermoelectric Generators," Energies, MDPI, vol. 15(10), pages 1-20, May.
    9. Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
    10. Xie, Yu & Wu, Shi-jun & Yang, Can-jun, 2016. "Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter," Applied Energy, Elsevier, vol. 164(C), pages 620-627.
    11. Kim, Tae Young & Negash, Assmelash A. & Cho, Gyubaek, 2017. "Experimental study of energy utilization effectiveness of thermoelectric generator on diesel engine," Energy, Elsevier, vol. 128(C), pages 531-539.
    12. Compadre Torrecilla, Marcos & Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R. & Strain, Andrew, 2019. "Novel model and maximum power tracking algorithm for thermoelectric generators operated under constant heat flux," Applied Energy, Elsevier, vol. 256(C).
    13. Torrecilla, Marcos Compadre & Montecucco, Andrea & Siviter, Jonathan & Strain, Andrew & Knox, Andrew R., 2018. "Transient response of a thermoelectric generator to load steps under constant heat flux," Applied Energy, Elsevier, vol. 212(C), pages 293-303.
    14. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    15. Huang, Shouyuan & Xu, Xianfan, 2017. "A regenerative concept for thermoelectric power generation," Applied Energy, Elsevier, vol. 185(P1), pages 119-125.
    16. Massaguer, E. & Massaguer, A. & Montoro, L. & Gonzalez, J.R., 2014. "Development and validation of a new TRNSYS type for the simulation of thermoelectric generators," Applied Energy, Elsevier, vol. 134(C), pages 65-74.
    17. Montecucco, A. & Siviter, J. & Knox, A.R., 2017. "Combined heat and power system for stoves with thermoelectric generators," Applied Energy, Elsevier, vol. 185(P2), pages 1336-1342.
    18. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
    19. Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
    20. Zaher, M.H. & Abdelsalam, M.Y. & Cotton, J.S., 2020. "Study of the effects of axial conduction on the performance of thermoelectric generators integrated in a heat exchanger for waste heat recovery applications," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:180:y:2016:i:c:p:472-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.