IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v186y2023ics1364032123005178.html
   My bibliography  Save this article

Quantifying the influence of nature-based solutions on building cooling and heating energy demand: A climate specific review

Author

Listed:
  • He, Q.
  • Tapia, F.
  • Reith, A.

Abstract

Implementing Nature-Based Solutions (NBS) is a promising way to reduce building energy demand and facilitates the achievement of United Nations Sustainable Development Goal 7, as they provide shading, evapotranspiration cooling and other influences on buildings. Although this field has attracted much attention, uncertainty persists regarding the potential of different NBS types to impact building energy demand in different climate conditions. To clarify this uncertainty, 101 papers were studied based on the Web of Science and Scopus databases. The current status analysis explored the development state of this field. Building energy performance analysis evaluated the potential reduction in cooling and heating energy in different climates by applying different NBS types at building scale. The review revealed that the cooling energy saving potential of NBS varies from 3% to 90%, while the potential reduction in heating energy demand ranges from 0.58% to 60%. The extent of the reduction in both cases is dependent on the NBS type and climate. Notably, some NBS types may lead to an increase in heating energy demand by between 5.9% and 25% in climates with short and mild winters. This review found that maximizing the energy-saving potential of NBS requires a comprehensive consideration of multiple factors rather than maximizing an individual factor. Further, most studies in this field have only concentrated on a few NBS types and climate zones, resulting in significant differences in research depth among different NBS categories. Future work should focus on neglected NBS types and climates to fully understand their energy-saving potential.

Suggested Citation

  • He, Q. & Tapia, F. & Reith, A., 2023. "Quantifying the influence of nature-based solutions on building cooling and heating energy demand: A climate specific review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123005178
    DOI: 10.1016/j.rser.2023.113660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shafique, Muhammad & Kim, Reeho & Rafiq, Muhammad, 2018. "Green roof benefits, opportunities and challenges – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 757-773.
    2. Laurent Malys & Marjorie Musy & Christian Inard, 2016. "Direct and Indirect Impacts of Vegetation on Building Comfort: A Comparative Study of Lawns, Green Walls and Green Roofs," Energies, MDPI, vol. 9(1), pages 1-20, January.
    3. Ferrante, Patrizia & La Gennusa, Maria & Peri, Giorgia & Rizzo, Gianfranco & Scaccianoce, Gianluca, 2016. "Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system," Energy, Elsevier, vol. 115(P3), pages 1723-1732.
    4. Permpituck, Sittipong & Namprakai, Pichai, 2012. "The energy consumption performance of roof lawn gardens in Thailand," Renewable Energy, Elsevier, vol. 40(1), pages 98-103.
    5. Ayman Ragab & Ahmed Abdelrady, 2020. "Impact of Green Roofs on Energy Demand for Cooling in Egyptian Buildings," Sustainability, MDPI, vol. 12(14), pages 1-13, July.
    6. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    7. Salvalai, Graziano & Masera, Gabriele & Sesana, Marta Maria, 2015. "Italian local codes for energy efficiency of buildings: Theoretical definition and experimental application to a residential case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1245-1259.
    8. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2015. "The Impact of Local Microclimate Boundary Conditions on Building Energy Performance," Sustainability, MDPI, vol. 7(7), pages 1-24, July.
    9. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Green roofs in a Mediterranean climate: energy performances based on in-situ experimental data," Renewable Energy, Elsevier, vol. 152(C), pages 1414-1430.
    11. Hemsath, Timothy L. & Alagheband Bandhosseini, Kaveh, 2015. "Sensitivity analysis evaluating basic building geometry's effect on energy use," Renewable Energy, Elsevier, vol. 76(C), pages 526-538.
    12. Ascione, Fabrizio & Bianco, Nicola & de’ Rossi, Filippo & Turni, Gianluca & Vanoli, Giuseppe Peter, 2013. "Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?," Applied Energy, Elsevier, vol. 104(C), pages 845-859.
    13. Aboelata, Amir, 2021. "Assessment of green roof benefits on buildings’ energy-saving by cooling outdoor spaces in different urban densities in arid cities," Energy, Elsevier, vol. 219(C).
    14. Coma, Julià & Chàfer, Marta & Pérez, Gabriel & Cabeza, Luisa F., 2020. "How internal heat loads of buildings affect the effectiveness of vertical greenery systems? An experimental study," Renewable Energy, Elsevier, vol. 151(C), pages 919-930.
    15. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    16. Musammat Shahinara Begum & Sujit Kumar Bala & A.K.M. Saiful Islam & Debjit Roy, 2021. "Environmental and Social Dynamics of Urban Rooftop Agriculture (URTA) and Their Impacts on Microclimate Change," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    17. Fabrizio Ascione & Rosa Francesca De Masi & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2020. "Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches," Energies, MDPI, vol. 13(9), pages 1-39, May.
    18. Hole, Dave & Collins, Pamela & Tesfaw, Anteneh & Barrera, Lina & Mascia, Michael B. & Turner, Will, 2021. "Make nature's role visible to achieve the SDGs," EcoEvoRxiv 593q7, Center for Open Science.
    19. Ying Zhang & Jian Kang & Hong Jin, 2018. "A Review of Green Building Development in China from the Perspective of Energy Saving," Energies, MDPI, vol. 11(2), pages 1-18, February.
    20. Mansoureh Gholami & Alberto Barbaresi & Patrizia Tassinari & Marco Bovo & Daniele Torreggiani, 2020. "A Comparison of Energy and Thermal Performance of Rooftop Greenhouses and Green Roofs in Mediterranean Climate: A Hygrothermal Assessment in WUFI," Energies, MDPI, vol. 13(8), pages 1-15, April.
    21. Peng, Lilliana L.H. & Jiang, Zhidian & Yang, Xiaoshan & Wang, Qingqing & He, Yunfei & Chen, Sophia Shuang, 2020. "Energy savings of block-scale facade greening for different urban forms," Applied Energy, Elsevier, vol. 279(C).
    22. Elisa Peñalvo-López & Javier Cárcel-Carrasco & David Alfonso-Solar & Iván Valencia-Salazar & Elias Hurtado-Pérez, 2020. "Study of the Improvement on Energy Efficiency for a Building in the Mediterranean Area by the Installation of a Green Roof System," Energies, MDPI, vol. 13(5), pages 1-14, March.
    23. T. Shen & D. H. C. Chow & J. Darkwa, 2016. "Simulating the influence of microclimatic design on mitigating the Urban Heat Island effect in the Hangzhou Metropolitan Area of China," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(1), pages 130-139.
    24. Yu Zhang & Lei Zhang & Luyao Ma & Qinglin Meng & Peng Ren, 2019. "Cooling Benefits of an Extensive Green Roof and Sensitivity Analysis of Its Parameters in Subtropical Areas," Energies, MDPI, vol. 12(22), pages 1-22, November.
    25. Refahi, Amir Hossein & Talkhabi, Hossein, 2015. "Investigating the effective factors on the reduction of energy consumption in residential buildings with green roofs," Renewable Energy, Elsevier, vol. 80(C), pages 595-603.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ceylin Şirin & Azim Doğuş Tuncer & Ataollah Khanlari, 2023. "Improving the Performance of Unglazed Solar Air Heating Walls Using Mesh Packing and Nano-Enhanced Absorber Coating: An Energy–Exergy and Enviro-Economic Assessment," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    2. Dimitris Perivoliotis & Iasonas Arvanitis & Anna Tzavali & Vassilios Papakostas & Sophia Kappou & George Andreakos & Angeliki Fotiadi & John A. Paravantis & Manolis Souliotis & Giouli Mihalakakou, 2023. "Sustainable Urban Environment through Green Roofs: A Literature Review with Case Studies," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    3. Tao Ning & Xinyu Huang & Junwei Su & Xiaohu Yang, 2023. "Design and Research of Heat Storage Enhancement by Innovative Wave Fin in a Hot Water–Oil-Displacement System," Sustainability, MDPI, vol. 15(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    2. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Tan, Taotao & Kong, Fanhua & Yin, Haiwei & Cook, Lauren M. & Middel, Ariane & Yang, Shaoqi, 2023. "Carbon dioxide reduction from green roofs: A comprehensive review of processes, factors, and quantitative methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Noemi Caltabellotta & Felicia Cavaleri & Carlo Greco & Kestutis Navickas & Carlo Scibetta & Laura Giammanco, 2019. "Integration of green roofs&walls in urban areas," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 61-78.
    5. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Renata Rapisarda & Francesco Nocera & Vincenzo Costanzo & Gaetano Sciuto & Rosa Caponetto, 2022. "Hydroponic Green Roof Systems as an Alternative to Traditional Pond and Green Roofs: A Literature Review," Energies, MDPI, vol. 15(6), pages 1-27, March.
    7. Dong, Xin & He, Bao-Jie, 2023. "A standardized assessment framework for green roof decarbonization: A review of embodied carbon, carbon sequestration, bioenergy supply, and operational carbon scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Liberalesso, Tiago & Oliveira Cruz, Carlos & Matos Silva, Cristina & Manso, Maria, 2020. "Green infrastructure and public policies: An international review of green roofs and green walls incentives," Land Use Policy, Elsevier, vol. 96(C).
    10. Gianfranco Rizzo & Laura Cirrincione & Maria La Gennusa & Giorgia Peri & Gianluca Scaccianoce, 2023. "Green Roofs’ End of Life: A Literature Review," Energies, MDPI, vol. 16(2), pages 1-16, January.
    11. Fernando Alonso-Marroquin & Ghulam Qadir, 2023. "Synergy between Photovoltaic Panels and Green Roofs," Energies, MDPI, vol. 16(13), pages 1-17, July.
    12. Sinem Yıldırım & Çimen Özburak & Özge Özden, 2023. "Green Roofs, Vegetation Types, Impact on the Thermal Effectiveness: An Experimental Study in Cyprus," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    13. Peter Juras, 2022. "Positive Aspects of Green Roof Reducing Energy Consumption in Winter," Energies, MDPI, vol. 15(4), pages 1-14, February.
    14. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Green roofs in a Mediterranean climate: energy performances based on in-situ experimental data," Renewable Energy, Elsevier, vol. 152(C), pages 1414-1430.
    15. Hashemi, Sajedeh Sadat Ghazizadeh & Mahmud, Hilmi Bin & Ashraf, Muhammad Aqeel, 2015. "Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 669-679.
    16. Seyed Mohammad Hossein Zakeri & Amir Mahdiyar, 2020. "The Hindrances to Green Roof Adoption in a Semi-Arid Climate Condition," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    17. Bruno, Roberto & Bevilacqua, Piero, 2022. "Heat and mass transfer for the U-value assessment of opaque walls in the Mediterranean climate: Energy implications," Energy, Elsevier, vol. 261(PA).
    18. Peter Juras & Pavol Durica, 2022. "Measurement of the Green Façade Prototype in a Climate Chamber: Impact of Watering Regime on the Surface Temperatures," Energies, MDPI, vol. 15(7), pages 1-14, March.
    19. He, Yang & Yu, Hang & Ozaki, Akihito & Dong, Nannan & Zheng, Shiling, 2017. "Influence of plant and soil layer on energy balance and thermal performance of green roof system," Energy, Elsevier, vol. 141(C), pages 1285-1299.
    20. Zhenmin Yuan & Jianliang Zhou & Yaning Qiao & Yadi Zhang & Dandan Liu & Hui Zhu, 2020. "BIM-VE-Based Optimization of Green Building Envelope from the Perspective of both Energy Saving and Life Cycle Cost," Sustainability, MDPI, vol. 12(19), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123005178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.