IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i13p5360-d379521.html
   My bibliography  Save this article

Modeling and Validation of the Cool Summer Microclimate Formed by Passive Cooling Elements in a Semi-Outdoor Building Space

Author

Listed:
  • Maria Alejandra Del Rio

    (Department of Architecture and Building Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan)

  • Takashi Asawa

    (Department of Architecture and Building Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan)

  • Yukari Hirayama

    (Misawa Homes Institute of Research and Development, 1-1-19, Takaidonishi, Suginami-ku, Tokyo 168-0071, Japan)

Abstract

Previous measurements (Del Rio et al. 2019) have confirmed the formation of cool summer microclimates through a combination of passive cooling elements (i.e., evaporative cooling louver, vegetation, and sunscreen) in semi-outdoor building spaces in Japan. Computational fluid dynamics (CFD) simulation is useful to understand the contribution of each element to semi-outdoor and indoor microclimates with natural ventilation, and to determine their effective combination. To date, there have not been sufficient studies on the modeling and validation for the CFD simulation of microclimates by such elements. This study demonstrates the modeling method using literature-based values and field measurements. It also demonstrates model validity by comparing the obtained results with field measurements. The results show that CFD simulation with detailed modeling of these elements can replicate vertical temperature distributions at four different positions across the semi-outdoor space and indoor space. The maximum difference in air temperature between the measurements and simulation results was 0.7–1 °C. The sensitivities of each passive cooling element on the microclimates formed in both spaces were confirmed. The watered louver condition and shorter louver–window distance were most effective in cooling both spaces. These results indicate that the modeling method could be effectively applied to assess cool microclimates and formulate a passive cooling design.

Suggested Citation

  • Maria Alejandra Del Rio & Takashi Asawa & Yukari Hirayama, 2020. "Modeling and Validation of the Cool Summer Microclimate Formed by Passive Cooling Elements in a Semi-Outdoor Building Space," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5360-:d:379521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/13/5360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/13/5360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    2. He, Jiang & Hoyano, Akira & Asawa, Takashi, 2009. "A numerical simulation tool for predicting the impact of outdoor thermal environment on building energy performance," Applied Energy, Elsevier, vol. 86(9), pages 1596-1605, September.
    3. Baglivo, Cristina & Congedo, Paolo Maria, 2015. "Design method of high performance precast external walls for warm climate by multi-objective optimization analysis," Energy, Elsevier, vol. 90(P2), pages 1645-1661.
    4. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    5. Saffari, Mohammad & de Gracia, Alvaro & Ushak, Svetlana & Cabeza, Luisa F., 2017. "Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1239-1255.
    6. Maerefat, M. & Haghighi, A.P., 2010. "Natural cooling of stand-alone houses using solar chimney and evaporative cooling cavity," Renewable Energy, Elsevier, vol. 35(9), pages 2040-2052.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Tejero‐González & Antonio Franco‐Salas, 2022. "Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    2. Beilei Qin & Xi Xu & Takashi Asawa & Lulu Zhang, 2022. "Experimental and Numerical Analysis on Effect of Passive Cooling Methods on an Indoor Thermal Environment Having Floor-Level Windows," Sustainability, MDPI, vol. 14(13), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    2. Ruoning Chen & Xue-yi You, 2020. "Reduction of urban heat island and associated greenhouse gas emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 689-711, April.
    3. Aylin Ece Kayabekir & Zülal Akbay Arama & Gebrail Bekdaş & Sinan Melih Nigdeli & Zong Woo Geem, 2020. "Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications," Sustainability, MDPI, vol. 12(15), pages 1-30, July.
    4. Sergio L. González-González & Ana Tejero-González & Francisco J. Rey-Martínez & Manuel Andrés-Chicote, 2017. "Alternative for Summer Use of Solar Air Heaters in Existing Buildings," Energies, MDPI, vol. 10(7), pages 1-15, July.
    5. Allen-Dumas, Melissa R. & Rose, Amy N. & New, Joshua R. & Omitaomu, Olufemi A. & Yuan, Jiangye & Branstetter, Marcia L. & Sylvester, Linda M. & Seals, Matthew B. & Carvalhaes, Thomaz M. & Adams, Mark , 2020. "Impacts of the morphology of new neighborhoods on microclimate and building energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Pisello, Anna Laura & Goretti, Michele & Cotana, Franco, 2012. "A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity," Applied Energy, Elsevier, vol. 97(C), pages 419-429.
    7. Mehdi Makvandi & Baofeng Li & Mohamed Elsadek & Zeinab Khodabakhshi & Mohsen Ahmadi, 2019. "The Interactive Impact of Building Diversity on the Thermal Balance and Micro-Climate Change under the Influence of Rapid Urbanization," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    8. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    9. Facundo Bre & Antonio Caggiano & Eduardus A. B. Koenders, 2022. "Multiobjective Optimization of Cement-Based Panels Enhanced with Microencapsulated Phase Change Materials for Building Energy Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.
    10. Ascione, Fabrizio & Bianco, Nicola & Rossi, Filippo de’ & Turni, Gianluca & Vanoli, Giuseppe Peter, 2012. "Different methods for the modelling of thermal bridges into energy simulation programs: Comparisons of accuracy for flat heterogeneous roofs in Italian climates," Applied Energy, Elsevier, vol. 97(C), pages 405-418.
    11. Cristina Baglivo & Paolo Maria Congedo & Matteo Di Cataldo & Luigi Damiano Coluccia & Delia D’Agostino, 2017. "Envelope Design Optimization by Thermal Modelling of a Building in a Warm Climate," Energies, MDPI, vol. 10(11), pages 1-34, November.
    12. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    13. Kiluk, Sebastian, 2012. "Algorithmic acquisition of diagnostic patterns in district heating billing system," Applied Energy, Elsevier, vol. 91(1), pages 146-155.
    14. Paola Iodice & Nicola Massarotti & Alessandro Mauro, 2016. "Effects of Inhomogeneities on Heat and Mass Transport Phenomena in Thermal Bridges," Energies, MDPI, vol. 9(3), pages 1-21, February.
    15. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    16. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    17. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    18. Yang, Jianming & Lin, Zhongqi & Wu, Huijun & Chen, Qingchun & Xu, Xinhua & Huang, Gongsheng & Fan, Liseng & Shen, Xujun & Gan, Keming, 2020. "Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads," Renewable Energy, Elsevier, vol. 148(C), pages 975-986.
    19. Giuseppe Frustaci & Samantha Pilati & Cristina Lavecchia & Enea Marco Montoli, 2022. "High-Resolution Gridded Air Temperature Data for the Urban Environment: The Milan Data Set," Forecasting, MDPI, vol. 4(1), pages 1-24, February.
    20. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5360-:d:379521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.