IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p2025-d234631.html
   My bibliography  Save this article

City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China

Author

Listed:
  • Junbo Wang

    (College of Management Science, Chengdu University of Technology, Chengdu 610051, China)

  • Liu Chen

    (College of Management Science, Chengdu University of Technology, Chengdu 610051, China)

  • Lu Chen

    (College of Management Science, Chengdu University of Technology, Chengdu 610051, China)

  • Xiaohui Zhao

    (Graduate School of Economics, Nagoya University, Nagoya 464-8601, Japan)

  • Minxi Wang

    (College of Management Science, Chengdu University of Technology, Chengdu 610051, China)

  • Yiyi Ju

    (Graduate School of International Development, Nagoya University, Nagoya 464-8601, Japan
    Institute of Future Initiative, The University of Tokyo, Tokyo 113-0033, Japan)

  • Li Xin

    (College of Management Science, Chengdu University of Technology, Chengdu 610051, China)

Abstract

The sustainable development of the western region of China has always been essential to the national development strategy. The Western region has undertaken an industrial transfer from the Eastern and Central regions. Therefore, the CO 2 emission intensity in the western region is higher than those of the Eastern and Central regions of China, and consequently its low-carbon development pathway has an important impact for China as a whole. Sichuan Province is not only the province with the highest CO 2 emissions, but also the most economically developed province in Western China in 2018. In order to promote low carbon development in the western region, it is important to understand the features of emissions in Sichuan Province and to formulate effective energy strategies accordingly. This paper uses the IPCC regional emission accounting method to calculate the carbon emissions of 15 cities in Sichuan province, and to comply with the city-level emission accounts. The results show that the total carbon emissions of Sichuan province over the past 10 years was 3258.32 mt and reached a peak in 2012. The smelting and pressing of ferrous metals, coal mining and dressing were the leading sectors that contributed to the emissions, accounting for 17.86% and 15.82%, respectively. Raw coal, cleaned coal, and coke were the most significant contributors to CO 2 emissions, accounting for 43.73%, 9.55%, and 6.60%, respectively. Following the above results, the Sichuan provincial government can formulate differentiated energy structure policies according to different energy consumption structures and carbon emission levels in the 15 cities. By controlling the level of total emissions and regulating larger industrial emitters in Sichuan province, some useful information could be provided as an essential reference for low-carbon development in Western China, and contribute to the promotion of emissions mitigation from a more holistic perspective.

Suggested Citation

  • Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:2025-:d:234631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/2025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/2025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Hui & Xie, Nan & Fang, Debin & Zhang, Xiaoling, 2018. "The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries," Applied Energy, Elsevier, vol. 211(C), pages 1229-1244.
    2. Zhou, Ya & Shan, Yuli & Liu, Guosheng & Guan, Dabo, 2018. "Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings," Applied Energy, Elsevier, vol. 228(C), pages 1683-1692.
    3. Li, Hong-qiang & Wang, Li-mao & Shen, Lei & Chen, Feng-nan, 2012. "Study of the potential of low carbon energy development and its contribution to realize the reduction target of carbon intensity in China," Energy Policy, Elsevier, vol. 41(C), pages 393-401.
    4. Zhang, B. & Qiao, H. & Chen, Z.M. & Chen, B., 2016. "Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–output analysis," Applied Energy, Elsevier, vol. 184(C), pages 1093-1105.
    5. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    6. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    7. David I. Stern and Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    8. Zhou, Yang & Huang, Guo H. & Yang, Boting, 2013. "Water resources management under multi-parameter interactions: A factorial multi-stage stochastic programming approach," Omega, Elsevier, vol. 41(3), pages 559-573.
    9. Zhou, Y. & Li, Y.P. & Huang, G.H., 2015. "Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty," Applied Energy, Elsevier, vol. 140(C), pages 350-364.
    10. Lorraine Sugar & Christopher Kennedy & Edward Leman, 2012. "Greenhouse Gas Emissions from Chinese Cities," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 552-563, August.
    11. Geng, Yong & Zhao, Hongyan & Liu, Zhu & Xue, Bing & Fujita, Tsuyoshi & Xi, Fengming, 2013. "Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning," Energy Policy, Elsevier, vol. 60(C), pages 820-826.
    12. Xi, Fengming & Geng, Yong & Chen, Xudong & Zhang, Yunsong & Wang, Xinbei & Xue, Bing & Dong, Huijuan & Liu, Zhu & Ren, Wanxia & Fujita, Tsuyoshi & Zhu, Qinghua, 2011. "Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China," Energy Policy, Elsevier, vol. 39(10), pages 5999-6010, October.
    13. repec:bla:devpol:v:27:y:2009:i:6:p:693-715 is not listed on IDEAS
    14. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    15. Liu, Zhu & Liang, Sai & Geng, Yong & Xue, Bing & Xi, Fengming & Pan, Ying & Zhang, Tianzhu & Fujita, Tsuyoshi, 2012. "Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing," Energy, Elsevier, vol. 37(1), pages 245-254.
    16. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    17. Lin, Jianyi & Liu, Yuan & Meng, Fanxin & Cui, Shenghui & Xu, Lilai, 2013. "Using hybrid method to evaluate carbon footprint of Xiamen City, China," Energy Policy, Elsevier, vol. 58(C), pages 220-227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongmei Liu & Rong Guo & Junjie Tian & Honghao Sun & Yi Wang & Haiyan Li & Lu Yao, 2022. "Quantifying the Carbon Reduction Potential of Recycling Construction Waste Based on Life Cycle Assessment: A Case of Jiangsu Province," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
    2. Kerong Zhang & Liangyu Jiang & Yanzhi Jin & Wuyi Liu, 2022. "The Carbon Emission Characteristics and Reduction Potential in Developing Areas: Case Study from Anhui Province, China," IJERPH, MDPI, vol. 19(24), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaoyu & Duan, Zhiyuan & Shan, Yuli & Duan, Haiyan & Wang, Shuo & Song, Junnian & Wang, Xian'en, 2019. "Low-carbon developments in Northeast China: Evidence from cities," Applied Energy, Elsevier, vol. 236(C), pages 1019-1033.
    2. Zhou, Ya & Shan, Yuli & Liu, Guosheng & Guan, Dabo, 2018. "Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings," Applied Energy, Elsevier, vol. 228(C), pages 1683-1692.
    3. Cai, Bofeng & Lu, Jun & Wang, Jinnan & Dong, Huijuan & Liu, Xiaoman & Chen, Yang & Chen, Zhanming & Cong, Jianhui & Cui, Zhipeng & Dai, Chunyan & Fang, Kai & Feng, Tong & Guo, Jie & Li, Fen & Meng, Fa, 2019. "A benchmark city-level carbon dioxide emission inventory for China in 2005," Applied Energy, Elsevier, vol. 233, pages 659-673.
    4. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    5. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    6. Lu Chen & Xin Li & Yunqi Yang & Minxi Wang, 2021. "Analyzing the features of energy consumption and carbon emissions in the Upper Yangtze River Economic Zone," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 573-589, June.
    7. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    8. Du, Mingxi & Wang, Xiaoge & Peng, Changhui & Shan, Yuli & Chen, Huai & Wang, Meng & Zhu, Qiuan, 2018. "Quantification and scenario analysis of CO2 emissions from the central heating supply system in China from 2006 to 2025," Applied Energy, Elsevier, vol. 225(C), pages 869-875.
    9. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    10. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    11. Chen, Qianli & Cai, Bofeng & Dhakal, Shobhakar & Pei, Sha & Liu, Chunlan & Shi, Xiaoping & Hu, Fangfang, 2017. "CO2 emission data for Chinese cities," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 198-208.
    12. Xuecheng Wang & Xu Tang & Zhenhua Feng & Yi Zhang, 2019. "Characterizing the Embodied Carbon Emissions Flows and Ecological Relationships among Four Chinese Megacities and Other Provinces," Sustainability, MDPI, vol. 11(9), pages 1-19, May.
    13. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
    14. Cai, Bofeng & Guo, Huanxiu & Ma, Zipeng & Wang, Zhixuan & Dhakal, Shobhakar & Cao, Libin, 2019. "Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data," Applied Energy, Elsevier, vol. 242(C), pages 994-1009.
    15. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    16. Zhang, Wei & Li, Ke & Zhou, Dequn & Zhang, Wenrui & Gao, Hui, 2016. "Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method," Energy Policy, Elsevier, vol. 92(C), pages 369-381.
    17. Ji, Ling & Liang, Sai & Qu, Shen & Zhang, Yanxia & Xu, Ming & Jia, Xiaoping & Jia, Yingtao & Niu, Dongxiao & Yuan, Jiahai & Hou, Yong & Wang, Haikun & Chiu, Anthony S.F. & Hu, Xiaojun, 2016. "Greenhouse gas emission factors of purchased electricity from interconnected grids," Applied Energy, Elsevier, vol. 184(C), pages 751-758.
    18. Xiao, Huijuan & Duan, Zhiyuan & Zhou, Ya & Zhang, Ning & Shan, Yuli & Lin, Xiyan & Liu, Guosheng, 2019. "CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Cui, Yuanzheng & Zhang, Weishi & Wang, Can & Streets, David G. & Xu, Ying & Du, Mingxi & Lin, Jintai, 2019. "Spatiotemporal dynamics of CO2 emissions from central heating supply in the North China Plain over 2012–2016 due to natural gas usage," Applied Energy, Elsevier, vol. 241(C), pages 245-256.
    20. Meng, Fanxin & Liu, Gengyuan & Hu, Yuanchao & Su, Meirong & Yang, Zhifeng, 2018. "Urban carbon flow and structure analysis in a multi-scales economy," Energy Policy, Elsevier, vol. 121(C), pages 553-564.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:2025-:d:234631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.