IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v12y2008i8p2140-2158.html
   My bibliography  Save this article

Influence of massive heat-pump introduction on the electricity-generation mix and the GHG effect: Comparison between Belgium, France, Germany and The Netherlands

Author

Listed:
  • Luickx, Patrick J.
  • Helsen, Lieve M.
  • D'haeseleer, William D.

Abstract

To evaluate the environmental impact of massive heat-pump introduction on greenhouse gas (GHG) emissions in different electricity-generation systems, dynamic simulations have been carried out for four European countries, namely, Belgium, France, Germany and the Netherlands. For this purpose, the simulations are performed with Promix, a tool that models the overall electricity-generation system. Three heating devices are considered for each country, namely classic fossil-fuel heating, heat pumps and electric resistance heating. Both direct heat-pump heating with a coefficient of performance (COP) of 2.5 and accumulation heat-pump heating with a COP of 5 are investigated. The introduction of electric heating in an electricity-generation system increases the demand for electricity and generates a shift of emissions from fossil-fuel heating systems to electrical plants. The results of the simulations reveal that the massive introduction of either heat pump or resistance heating is always favourable to the environment in France. The most environmentally friendly scenario in 2010 is projected to reduce GHG emissions by about 3.8Â Mton compared to the reference scenario. In Belgium and Germany, the largest reduction in GHG emissions occurs with accumulation heat pumps. Belgium can save up to 220Â kton of GHG emissions, while Germany can attain reductions of 800Â kton in 2010. In the Netherlands, a significant reduction can be achieved by considering the addition of gas-fired combined cycle (CC) power plants, together with the introduction of electric heating, resulting in emissions savings of 410Â kton.

Suggested Citation

  • Luickx, Patrick J. & Helsen, Lieve M. & D'haeseleer, William D., 2008. "Influence of massive heat-pump introduction on the electricity-generation mix and the GHG effect: Comparison between Belgium, France, Germany and The Netherlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2140-2158, October.
  • Handle: RePEc:eee:rensus:v:12:y:2008:i:8:p:2140-2158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(07)00062-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Voorspools, Kris R & D'haeseleer, William D, 2000. "The influence of the instantaneous fuel mix for electricity generation on the corresponding emissions," Energy, Elsevier, vol. 25(11), pages 1119-1138.
    2. Voorspools, Kris R. & D'haeseleer, William D., 2000. "An evaluation method for calculating the emission responsibility of specific electric applications," Energy Policy, Elsevier, vol. 28(13), pages 967-980, November.
    3. Voorspools, Kris R. & D'haeseleer, William D., 2003. "Long-term Unit Commitment optimisation for large power systems: unit decommitment versus advanced priority listing," Applied Energy, Elsevier, vol. 76(1-3), pages 157-167, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le, Khoa Xuan & Huang, Ming Jun & Wilson, Christopher & Shah, Nikhilkumar N. & Hewitt, Neil J., 2020. "Tariff-based load shifting for domestic cascade heat pump with enhanced system energy efficiency and reduced wind power curtailment," Applied Energy, Elsevier, vol. 257(C).
    2. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    3. Decuypere, Robbe & Robaeyst, Ben & Hudders, Liselot & Baccarne, Bastiaan & Van de Sompel, Dieneke, 2022. "Transitioning to energy efficient housing: Drivers and barriers of intermediaries in heat pump technology," Energy Policy, Elsevier, vol. 161(C).
    4. Nematchoua, Modeste Kameni & Asadi, Somayeh & Reiter, Sigrid, 2020. "Influence of energy mix on the life cycle of an eco-neighborhood, a case study of 150 countries," Renewable Energy, Elsevier, vol. 162(C), pages 81-97.
    5. Cho, Sangmin & Kim, Jinsoo & Heo, Eunnyeong, 2015. "Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1075-1083.
    6. Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
    7. Fraga, Carolina & Hollmuller, Pierre & Schneider, Stefan & Lachal, Bernard, 2018. "Heat pump systems for multifamily buildings: Potential and constraints of several heat sources for diverse building demands," Applied Energy, Elsevier, vol. 225(C), pages 1033-1053.
    8. Zhang, Qi & Tezuka, Tetsuo & Ishihara, Keiichi N. & Mclellan, Benjamin C., 2012. "Integration of PV power into future low-carbon smart electricity systems with EV and HP in Kansai Area, Japan," Renewable Energy, Elsevier, vol. 44(C), pages 99-108.
    9. Blarke, Morten B. & Dotzauer, Erik, 2011. "Intermittency-friendly and high-efficiency cogeneration: Operational optimisation of cogeneration with compression heat pump, flue gas heat recovery, and intermediate cold storage," Energy, Elsevier, vol. 36(12), pages 6867-6878.
    10. Dowds, Jonathan & Hines, Paul D.H. & Blumsack, Seth, 2013. "Estimating the impact of fuel-switching between liquid fuels and electricity under electricity-sector carbon-pricing schemes," Socio-Economic Planning Sciences, Elsevier, vol. 47(2), pages 76-88.
    11. Bach, Bjarne & Werling, Jesper & Ommen, Torben & Münster, Marie & Morales, Juan M. & Elmegaard, Brian, 2016. "Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen," Energy, Elsevier, vol. 107(C), pages 321-334.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    2. Biéron, M. & Le Dréau, J. & Haas, B., 2023. "Assessment of the marginal technologies reacting to demand response events: A French case-study," Energy, Elsevier, vol. 275(C).
    3. Hawkes, A.D., 2014. "Long-run marginal CO2 emissions factors in national electricity systems," Applied Energy, Elsevier, vol. 125(C), pages 197-205.
    4. Psomopoulos, C.S. & Skoula, I. & Karras, C. & Chatzimpiros, A. & Chionidis, M., 2010. "Electricity savings and CO2 emissions reduction in buildings sector: How important the network losses are in the calculation?," Energy, Elsevier, vol. 35(1), pages 485-490.
    5. Hawkes, A.D., 2010. "Estimating marginal CO2 emissions rates for national electricity systems," Energy Policy, Elsevier, vol. 38(10), pages 5977-5987, October.
    6. Delarue, E.D. & Ellerman, A.D. & D'haeseleer, W.D., 2010. "Robust MACCs? The topography of abatement by fuel switching in the European power sector," Energy, Elsevier, vol. 35(3), pages 1465-1475.
    7. Joshua M. Pearce, 2012. "Limitations of Nuclear Power as a Sustainable Energy Source," Sustainability, MDPI, vol. 4(6), pages 1-15, June.
    8. Leino, M. & Uusitalo, V. & Grönman, A. & Nerg, J. & Horttanainen, M. & Soukka, R. & Pyrhönen, J., 2016. "Economics and greenhouse gas balance of distributed electricity production at sawmills using hermetic turbogenerator," Renewable Energy, Elsevier, vol. 88(C), pages 102-111.
    9. Filippo Beltrami & Fulvio Fontini & Monica Giulietti & Luigi Grossi, 2022. "The Zonal and Seasonal CO2 Marginal Emissions Factors for the Italian Power Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 381-411, October.
    10. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    11. Halmschlager, Daniel & Beck, Anton & Knöttner, Sophie & Koller, Martin & Hofmann, René, 2022. "Combined optimization for retrofitting of heat recovery and thermal energy supply in industrial systems," Applied Energy, Elsevier, vol. 305(C).
    12. Haeseldonckx, Dries & D'haeseleer, William, 2008. "The environmental impact of decentralised generation in an overall system context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 437-454, February.
    13. Dimitroulas, Dionisios K. & Georgilakis, Pavlos S., 2011. "A new memetic algorithm approach for the price based unit commitment problem," Applied Energy, Elsevier, vol. 88(12), pages 4687-4699.
    14. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    15. Voorspools, Kris R. & D'haeseleer, William D., 2000. "An evaluation method for calculating the emission responsibility of specific electric applications," Energy Policy, Elsevier, vol. 28(13), pages 967-980, November.
    16. Fernández-Blanco, Ricardo & Arroyo, José M. & Alguacil, Natalia, 2014. "Consumer payment minimization under uniform pricing: A mixed-integer linear programming approach," Applied Energy, Elsevier, vol. 114(C), pages 676-686.
    17. Leuthold, Florian & Weigt, Hannes & von Hirschhausen, Christian, 2008. "ELMOD - A Model of the European Electricity Market," MPRA Paper 65660, University Library of Munich, Germany.
    18. Baumgärtner, Nils & Delorme, Roman & Hennen, Maike & Bardow, André, 2019. "Design of low-carbon utility systems: Exploiting time-dependent grid emissions for climate-friendly demand-side management," Applied Energy, Elsevier, vol. 247(C), pages 755-765.
    19. Ming, Wei & Nazifi, Fatemeh & Trück, Stefan, 2024. "Emission intensities in the Australian National Electricity Market – An econometric analysis," Energy Economics, Elsevier, vol. 129(C).
    20. Pimm, Andrew J. & Palczewski, Jan & Barbour, Edward R. & Cockerill, Tim T., 2021. "Using electricity storage to reduce greenhouse gas emissions," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:12:y:2008:i:8:p:2140-2158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.