IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v222y2018icp437-450.html
   My bibliography  Save this article

Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method

Author

Listed:
  • Naqiuddin, Nor Haziq
  • Saw, Lip Huat
  • Yew, Ming Chian
  • Yusof, Farazila
  • Poon, Hiew Mun
  • Cai, Zuansi
  • Thiam, Hui San

Abstract

The scale-down trend increases the chips’ density and the high power handling capability generates unnecessary heat which can disrupt the reliability of the electronic devices. Therefore, various types of cooling solution have been proposed to enhance heat dissipation from the electronic devices. One of the solution is using inexpensive straight-channel heat sink. However, the presence of large temperature gradient between the upstream and downstream in the straight-channel can shorten the life span of the device and subsequently reduce the reliability. In this study, a novel segmented micro-channel is introduced to improve the thermal performance of the straight-channel heat sink. Computational fluid dynamic analysis are performed to investigate the performance of the micro-channel heat sink. The bottom of the heat sink is subjected to a constant heat flux condition and water is used as a coolant. Following that, Taguchi-grey method is applied to optimize the design of the segmented micro-channel. The effect of fin width, fin length, fin transverse distance, number of segments, channel width and mass flow rate on the specific performance, variation of temperature and pressure drop are investigated. The results indicate that a three segments of segmented micro-channel, fin width-1 mm, fin length-2 mm, fin transverse distance-5 mm and channel width-1 mm have successfully enhance the heat transfer performance with minimum pressure drop. It is also found that the optimized micro-channel heat sink is able to cool the chip with heat flux of 800 W to 56.6 °C and pumping power of 0.13 W using 15 gs−1 of water.

Suggested Citation

  • Naqiuddin, Nor Haziq & Saw, Lip Huat & Yew, Ming Chian & Yusof, Farazila & Poon, Hiew Mun & Cai, Zuansi & Thiam, Hui San, 2018. "Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method," Applied Energy, Elsevier, vol. 222(C), pages 437-450.
  • Handle: RePEc:eee:appene:v:222:y:2018:i:c:p:437-450
    DOI: 10.1016/j.apenergy.2018.03.186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918305336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    2. Srikanth, R. & Nemani, Pavan & Balaji, C., 2015. "Multi-objective geometric optimization of a PCM based matrix type composite heat sink," Applied Energy, Elsevier, vol. 156(C), pages 703-714.
    3. Salman, B.H. & Mohammed, H.A. & Munisamy, K.M. & Kherbeet, A. Sh., 2013. "Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 848-880.
    4. Sharma, Chander Shekhar & Tiwari, Manish K. & Zimmermann, Severin & Brunschwiler, Thomas & Schlottig, Gerd & Michel, Bruno & Poulikakos, Dimos, 2015. "Energy efficient hotspot-targeted embedded liquid cooling of electronics," Applied Energy, Elsevier, vol. 138(C), pages 414-422.
    5. Jin, L.W. & Lee, P.S. & Kong, X.X. & Fan, Y. & Chou, S.K., 2014. "Ultra-thin minichannel LCP for EV battery thermal management," Applied Energy, Elsevier, vol. 113(C), pages 1786-1794.
    6. Wu, Zhiyong & Caliot, Cyril & Bai, Fengwu & Flamant, Gilles & Wang, Zhifeng & Zhang, Jinsong & Tian, Chong, 2010. "Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications," Applied Energy, Elsevier, vol. 87(2), pages 504-513, February.
    7. Saw, Lip Huat & Ye, Yonghuang & Tay, Andrew A.O. & Chong, Wen Tong & Kuan, Seng How & Yew, Ming Chian, 2016. "Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling," Applied Energy, Elsevier, vol. 177(C), pages 783-792.
    8. Sahin, Bayram & Yakut, Kenan & Kotcioglu, Isak & Celik, Cafer, 2005. "Optimum design parameters of a heat exchanger," Applied Energy, Elsevier, vol. 82(1), pages 90-106, September.
    9. Saw, Lip Huat & Ye, Yonghuang & Yew, Ming Chian & Chong, Wen Tong & Yew, Ming Kun & Ng, Tan Ching, 2017. "Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system," Applied Energy, Elsevier, vol. 204(C), pages 1489-1499.
    10. Pan, Minqiang & Wu, Qiuyu & Jiang, Lianbo & Zeng, Dehuai, 2015. "Effect of microchannel structure on the reaction performance of methanol steam reforming," Applied Energy, Elsevier, vol. 154(C), pages 416-427.
    11. Pandey, Navdeep & Murugesan, K. & Thomas, H.R., 2017. "Optimization of ground heat exchangers for space heating and cooling applications using Taguchi method and utility concept," Applied Energy, Elsevier, vol. 190(C), pages 421-438.
    12. Chen, Wei-Hsin & Huang, Shih-Rong & Lin, Yu-Li, 2015. "Performance analysis and optimum operation of a thermoelectric generator by Taguchi method," Applied Energy, Elsevier, vol. 158(C), pages 44-54.
    13. Jang, Daeseok & Yook, Se-Jin & Lee, Kwan-Soo, 2014. "Optimum design of a radial heat sink with a fin-height profile for high-power LED lighting applications," Applied Energy, Elsevier, vol. 116(C), pages 260-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahsa Hajialibabaei & Mohamad Ziad Saghir & Yusuf Bicer, 2023. "Comparing the Performance of a Straight-Channel Heat Sink with Different Channel Heights: An Experimental and Numerical Study," Energies, MDPI, vol. 16(9), pages 1-20, April.
    2. Muhsin Kılıç & Sevgül Gamsız & Zehra Nihan Alınca, 2023. "Comparative Evaluation and Multi-Objective Optimization of Cold Plate Designed for the Lithium-Ion Battery Pack of an Electrical Pickup by Using Taguchi–Grey Relational Analysis," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    3. Bademlioglu, A.H. & Canbolat, A.S. & Kaynakli, O., 2020. "Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey Relational Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Wang, Jian & Kong, Hui & Xu, Yaobin & Wu, Jinsong, 2019. "Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling," Applied Energy, Elsevier, vol. 241(C), pages 433-443.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Wu, Chunxia & Sun, Yalong & Tang, Heng & Zhang, Shiwei & Yuan, Wei & Zhu, Likuan & Tang, Yong, 2024. "A review on the liquid cooling thermal management system of lithium-ion batteries," Applied Energy, Elsevier, vol. 375(C).
    3. Lin, Xiaohui & Mo, Songping & Jia, Lisi & Yang, Zhi & Chen, Ying & Cheng, Zhengdong, 2019. "Experimental study and Taguchi analysis on LED cooling by thermoelectric cooler integrated with microchannel heat sink," Applied Energy, Elsevier, vol. 242(C), pages 232-238.
    4. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    5. Zhaochun Shi & Guohua Wang & Chunli Liu & Qiang Lv & Baoli Gong & Yingchao Zhang & Yuying Yan, 2023. "Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method," Energies, MDPI, vol. 16(2), pages 1-16, January.
    6. Tan, Weng Cheong & Saw, Lip Huat & Thiam, Hui San & Xuan, Jin & Cai, Zuansi & Yew, Ming Chian, 2018. "Overview of porous media/metal foam application in fuel cells and solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 181-197.
    7. Xu, Xinhai & Li, Wenzheng & Xu, Ben & Qin, Jiang, 2019. "Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions," Applied Energy, Elsevier, vol. 250(C), pages 404-412.
    8. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    9. De Vita, Armando & Maheshwari, Arpit & Destro, Matteo & Santarelli, Massimo & Carello, Massimiliana, 2017. "Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications," Applied Energy, Elsevier, vol. 206(C), pages 101-112.
    10. Lazarov, Boyan S. & Sigmund, Ole & Meyer, Knud E. & Alexandersen, Joe, 2018. "Experimental validation of additively manufactured optimized shapes for passive cooling," Applied Energy, Elsevier, vol. 226(C), pages 330-339.
    11. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    12. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
    13. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    14. Ling, Ziye & Cao, Jiahao & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology," Applied Energy, Elsevier, vol. 228(C), pages 777-788.
    15. Zhang, Shengchun & Wang, Zhifeng & Wu, Zhiyong & Bai, Fengwu & Huang, Pingrui, 2019. "Numerical investigation of the heat transport in a very loose packed granular bed air receiver with a non-uniform energy flux distribution," Renewable Energy, Elsevier, vol. 138(C), pages 987-998.
    16. Pitot de la Beaujardiere, Jean-Francois P. & Reuter, Hanno C.R., 2018. "A review of performance modelling studies associated with open volumetric receiver CSP plant technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3848-3862.
    17. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    18. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    19. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    20. Choon Kit Chan & Chi Hong Chung & Jeyagopi Raman, 2023. "Optimizing Thermal Management System in Electric Vehicle Battery Packs for Sustainable Transportation," Sustainability, MDPI, vol. 15(15), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:222:y:2018:i:c:p:437-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.