IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v218y2018icp104-113.html
   My bibliography  Save this article

Who gets my flex? An evolutionary game theory analysis of flexibility market dynamics

Author

Listed:
  • Coninx, Kristof
  • Deconinck, Geert
  • Holvoet, Tom

Abstract

Maintaining a real time balance between energy consumption and production is challenging when faced with increasing penetration of Renewable Energy Sources (RES) because of the increased variability in generation output. Demand-Side Management (DSM) techniques address this issue by steering consumers’ energy off-take, thereby enabling further penetration of RES. Present paper addresses the problem of overproduction from distribution grid connected wind generation. We present and analyze two business cases in the Belgian-European energy landscape for using upward consumption flexibility to deal with excessive wind power injection. We focus on the perspective of the flexibility providers and the strategic choice they face in choosing the business partner that maximizes their expected financial compensation. Evolutionary game theory is used to model this strategic choice and to provide a framework for quantifying realistic financial compensation bounds based on real world market and wind production data for multiple locations in Belgium. Results show that in a competitive market setting compensation payments for flexible power consumption are higher when dealing with higher wind forecast error levels. These results validate the economic benefits of having accurate wind production forecasts.

Suggested Citation

  • Coninx, Kristof & Deconinck, Geert & Holvoet, Tom, 2018. "Who gets my flex? An evolutionary game theory analysis of flexibility market dynamics," Applied Energy, Elsevier, vol. 218(C), pages 104-113.
  • Handle: RePEc:eee:appene:v:218:y:2018:i:c:p:104-113
    DOI: 10.1016/j.apenergy.2018.02.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191830223X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiroux, C. & Saguan, M., 2010. "Large-scale wind power in European electricity markets: Time for revisiting support schemes and market designs?," Energy Policy, Elsevier, vol. 38(7), pages 3135-3145, July.
    2. Daniel Friedman, 1998. "On economic applications of evolutionary game theory," Journal of Evolutionary Economics, Springer, vol. 8(1), pages 15-43.
    3. Timur Kuran & William H. Sandholm, 2008. "Cultural Integration and Its Discontents," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(1), pages 201-228.
    4. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
    5. repec:hhs:iuiwop:487 is not listed on IDEAS
    6. Brijs, Tom & De Vos, Kristof & De Jonghe, Cedric & Belmans, Ronnie, 2015. "Statistical analysis of negative prices in European balancing markets," Renewable Energy, Elsevier, vol. 80(C), pages 53-60.
    7. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    8. Nachbar, J H, 1990. ""Evolutionary" Selection Dynamics in Games: Convergence and Limit Properties," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(1), pages 59-89.
    9. Finn, Paddy & Fitzpatrick, Colin, 2014. "Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing," Applied Energy, Elsevier, vol. 113(C), pages 11-21.
    10. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    11. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, December.
    12. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    13. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    14. Agastya, Murali, 2004. "Stochastic stability in a double auction," Games and Economic Behavior, Elsevier, vol. 48(2), pages 203-222, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jun & Qin, Yanjun & Zhou, Jingyang, 2021. "Incentive policies for prefabrication implementation of real estate enterprises: An evolutionary game theory-based analysis," Energy Policy, Elsevier, vol. 156(C).
    2. Weiwei Liu & Jianing Yang, 2018. "The Evolutionary Game Theoretic Analysis for Sustainable Cooperation Relationship of Collaborative Innovation Network in Strategic Emerging Industries," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    3. Rossi, Iacopo & Traverso, Alberto & Tucker, David, 2019. "SOFC/Gas Turbine Hybrid System: A simplified framework for dynamic simulation," Applied Energy, Elsevier, vol. 238(C), pages 1543-1550.
    4. Li-cai Lei & Shang Gao & En-yu Zeng, 2020. "Regulation strategies of ride-hailing market in China: an evolutionary game theoretic perspective," Electronic Commerce Research, Springer, vol. 20(3), pages 535-563, September.
    5. Qiyun Huang & Junwu Wang & Mengwei Ye & Shiman Zhao & Xiang Si, 2022. "A Study on the Incentive Policy of China’s Prefabricated Residential Buildings Based on Evolutionary Game Theory," Sustainability, MDPI, vol. 14(3), pages 1-22, February.
    6. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2021. "Exploring the dilemma of overcapacity governance in China's coal industry: A tripartite evolutionary game model," Resources Policy, Elsevier, vol. 71(C).
    7. Du, Qiang & Wang, Yalei & Pang, Qiaoyu & Hao, Tingting & Zhou, Yuqing, 2023. "The dynamic analysis on low-carbon building adoption under emission trading scheme," Energy, Elsevier, vol. 263(PC).
    8. Carlo Schmitt & Felix Gaumnitz & Andreas Blank & Olivier Rebenaque & Théo Dronne & Arnault Martin & Philippe Vassilopoulos & Albert Moser & Fabien Roques, 2021. "Framework for Deterministic Assessment of Risk-Averse Participation in Local Flexibility Markets †," Energies, MDPI, vol. 14(11), pages 1-34, May.
    9. Hennig, Roman J. & de Vries, Laurens J. & Tindemans, Simon H., 2023. "Congestion management in electricity distribution networks: Smart tariffs, local markets and direct control," Utilities Policy, Elsevier, vol. 85(C).
    10. Leng Yi & Fukuda Hiroatsu, 2022. "Incentives for Innovation in Robotics and Automated Construction: Based on a Tripartite Evolutionary Game Analysis," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    11. Hao, Xinyu & Liu, Guangfu & Zhang, Xiaoling & Dong, Liang, 2022. "The coevolution mechanism of stakeholder strategies in the recycled resources industry innovation ecosystem: the view of evolutionary game theory," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    12. Siying Xu & Gaoyu Zhang & Xianzhi Yuan, 2024. "An Enterprise Multi-agent Model with Game Q-Learning Based on a Single Decision Factor," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2523-2562, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    2. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    3. Pechmann, Agnes & Shrouf, Fadi & Chonin, Max & Steenhusen, Nanke, 2017. "Load-shifting potential at SMEs manufacturing sites: A methodology and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 431-438.
    4. Klaucke, Franziska & Hoffmann, Christian & Hofmann, Mathias & Tsatsaronis, George, 2020. "Impact of the chlorine value chain on the demand response potential of the chloralkali process," Applied Energy, Elsevier, vol. 276(C).
    5. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    6. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    7. Heffron, Raphael & Körner, Marc-Fabian & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2020. "Industrial demand-side flexibility: A key element of a just energy transition and industrial development," Applied Energy, Elsevier, vol. 269(C).
    8. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    9. Chiara Gruden & Irena Ištoka Otković & Matjaž Šraml, 2020. "Neural Networks Applied to Microsimulation: A Prediction Model for Pedestrian Crossing Time," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    10. Thibaud Deguilhem & Juliette Schlegel & Jean-Philippe Berrou & Ousmane Djibo & Alain Piveteau, 2024. "Too many options: How to identify coalitions in a policy network?," Post-Print hal-04689665, HAL.
    11. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    12. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    13. Сластников С.А., 2014. "Применение Метаэвристических Алгоритмов Для Задачи Маршрутизации Транспорта," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 50(1), pages 117-126, январь.
    14. Antonio Cabrales & Giovanni Ponti, 2000. "Implementation, Elimination of Weakly Dominated Strategies and Evolutionary Dynamics," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 3(2), pages 247-282, April.
    15. Wenke Wang & Xiaoqiong You & Kebei Liu & Yenchun Jim Wu & Daming You, 2020. "Implementation of a Multi-Agent Carbon Emission Reduction Strategy under the Chinese Dual Governance System: An Evolutionary Game Theoretical Approach," IJERPH, MDPI, vol. 17(22), pages 1-21, November.
    16. Giovanni Ponti, 2000. "Splitting The Baby In Two: How To Solve Solomon'S Dilemma When Agents Are Boundedly Rational," Working Papers. Serie AD 2000-08, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    17. Sivan Frenkel & Yuval Heller & Roee Teper, 2018. "The Endowment Effect As Blessing," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(3), pages 1159-1186, August.
    18. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    19. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    20. Kadri Sylejmani & Jürgen Dorn & Nysret Musliu, 2017. "Planning the trip itinerary for tourist groups," Information Technology & Tourism, Springer, vol. 17(3), pages 275-314, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:218:y:2018:i:c:p:104-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.