Investigation of Thermo-Flow Characteristics of Natural Draft Dry Cooling Systems Designed with Only One Tower in 2 × 660 MW Power Plants
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Madjid Soltani & Alireza Dehghani-Sanij & Ahmad Sayadnia & Farshad M. Kashkooli & Kobra Gharali & SeyedBijan Mahbaz & Maurice B. Dusseault, 2018. "Investigation of Airflow Patterns in a New Design of Wind Tower with a Wetted Surface," Energies, MDPI, vol. 11(5), pages 1-23, April.
- Wang, Weiliang & Zhang, Hai & Li, Zheng & Lv, Junfu & Ni, Weidou & Li, Yongsheng, 2016. "Adoption of enclosure and windbreaks to prevent the degradation of the cooling performance for a natural draft dry cooling tower under crosswind conditions," Energy, Elsevier, vol. 116(P2), pages 1360-1369.
- Wang, Weiliang & Zhang, Hai & Liu, Pei & Li, Zheng & Lv, Junfu & Ni, Weidou, 2017. "The cooling performance of a natural draft dry cooling tower under crosswind and an enclosure approach to cooling efficiency enhancement," Applied Energy, Elsevier, vol. 186(P3), pages 336-346.
- Zhao, Yuanbin & Sun, Fengzhong & Li, Yan & Long, Guoqing & Yang, Zhi, 2015. "Numerical study on the cooling performance of natural draft dry cooling tower with vertical delta radiators under constant heat load," Applied Energy, Elsevier, vol. 149(C), pages 225-237.
- Lu, Yuanshen & Klimenko, Alexander & Russell, Hugh & Dai, Yuchen & Warner, John & Hooman, Kamel, 2018. "A conceptual study on air jet-induced swirling plume for performance improvement of natural draft cooling towers," Applied Energy, Elsevier, vol. 217(C), pages 496-508.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huiqian Guo & Yue Yang & Tongrui Cheng & Hanyu Zhou & Weijia Wang & Xiaoze Du, 2021. "Tower Configuration Impacts on the Thermal and Flow Performance of Steel-Truss Natural Draft Dry Cooling System," Energies, MDPI, vol. 14(7), pages 1-17, April.
- Li, Xiaoxiao & Gurgenci, Hal & Guan, Zhiqiang & Wang, Xurong & Duniam, Sam, 2017. "Measurements of crosswind influence on a natural draft dry cooling tower for a solar thermal power plant," Applied Energy, Elsevier, vol. 206(C), pages 1169-1183.
- Zhao Li & Huimin Wei & Tao Wu & Xiaoze Du, 2021. "Optimization for Circulating Cooling Water Distribution of Indirect Dry Cooling System in a Thermal Power Plant under Crosswind Condition with Evolution Strategies Algorithm," Energies, MDPI, vol. 14(4), pages 1-17, February.
- Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Modeling the performance of the indirect dry cooling system in a thermal power generating unit under variable ambient conditions," Energy, Elsevier, vol. 169(C), pages 625-636.
- Lu, Yuanshen & Klimenko, Alexander & Russell, Hugh & Dai, Yuchen & Warner, John & Hooman, Kamel, 2018. "A conceptual study on air jet-induced swirling plume for performance improvement of natural draft cooling towers," Applied Energy, Elsevier, vol. 217(C), pages 496-508.
- Kong, Yanqiang & Wang, Weijia & Yang, Lijun & Du, Xiaoze, 2020. "Energy efficient strategies for anti-freezing of air-cooled heat exchanger," Applied Energy, Elsevier, vol. 261(C).
- Weijia Wang & Lei Chen & Xianwei Huang & Lijun Yang & Xiaoze Du, 2017. "Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies," Energies, MDPI, vol. 10(12), pages 1-18, December.
- Sha Liu & Jiong Shen, 2022. "Modeling of Large-Scale Thermal Power Plants for Performance Prediction in Deep Peak Shaving," Energies, MDPI, vol. 15(9), pages 1-18, April.
- Yanqiang Kong & Weijia Wang & Zhitao Zuo & Lijun Yang & Xiaoze Du & Chao Xu & Yongping Yang, 2019. "Influencing Mechanisms of a Crosswind on the Thermo-Hydraulic Characteristics of a Large-Scale Air-Cooled Heat Exchanger," Energies, MDPI, vol. 12(6), pages 1-29, March.
- Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
- Hu, Hemin & Li, Zhigang & Jiang, Yuyan & Du, Xiaoze, 2018. "Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system," Energy, Elsevier, vol. 147(C), pages 729-741.
- Li, Xiaoxiao & Duniam, Sam & Gurgenci, Hal & Guan, Zhiqiang & Veeraragavan, Anand, 2017. "Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant," Applied Energy, Elsevier, vol. 193(C), pages 15-27.
- Grzegorz Czerwiński & Jerzy Wołoszyn, 2021. "Optimization of Air Cooling System Using Adjoint Solver Technique," Energies, MDPI, vol. 14(13), pages 1-24, June.
- Margherita Ferrucci & Fabio Peron, 2018. "Ancient Use of Natural Geothermal Resources: Analysis of Natural Cooling of 16th Century Villas in Costozza (Italy) as a Reference for Modern Buildings," Sustainability, MDPI, vol. 10(12), pages 1-20, November.
- Sun, Yubiao & Guan, Zhiqiang & Gurgenci, Hal & Wang, Jianyong & Dong, Peixin & Hooman, Kamel, 2019. "Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants," Energy, Elsevier, vol. 168(C), pages 273-284.
- Liu, Hua & Wu, Zhiyong & Zhang, Bingjian & Chen, Qinglin & Pan, Ming & Ren, Jingzheng & He, Chang, 2023. "A large-scale stochastic simulation-based thermodynamic optimization for the hybrid closed circuit cooling tower system with parallel computing," Energy, Elsevier, vol. 283(C).
- Wei, Huimin & Huang, Xianwei & Chen, Lin & Yang, Lijun & Du, Xiaoze, 2020. "Performance prediction and cost-effectiveness analysis of a novel natural draft hybrid cooling system for power plants," Applied Energy, Elsevier, vol. 262(C).
- Zhonghua Wang & Zenggang Yue & Wei Wang & Chenghui Ma & Xiaoguang Li & Changmin Guo & Yuanbin Zhao, 2024. "Study on the Influence of Circulating Water Bypass on the Thermal and Anti-Freezing Characteristics of High-Level Wet Cooling Tower," Energies, MDPI, vol. 17(9), pages 1-12, April.
- Zeyu Peng & Zeyu Li & Junquan Zeng & Jianting Yu, 2022. "Thermodynamic Study of Solar-Assisted Hybrid Cooling Systems with Consideration of Duration in Heat-Driven Processes," Energies, MDPI, vol. 15(10), pages 1-22, May.
- Hasan Alimoradi & Madjid Soltani & Pooriya Shahali & Farshad Moradi Kashkooli & Razieh Larizadeh & Kaamran Raahemifar & Mohammad Adibi & Behzad Ghasemi, 2020. "Experimental Investigation on Improvement of Wet Cooling Tower Efficiency with Diverse Packing Compaction Using ANN-PSO Algorithm," Energies, MDPI, vol. 14(1), pages 1-19, December.
More about this item
Keywords
natural draft dry cooling system with only one tower; power-generating unit; thermo-flow characteristics; cooling efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1308-:d:507108. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.