IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1167-d503775.html
   My bibliography  Save this article

Optimization for Circulating Cooling Water Distribution of Indirect Dry Cooling System in a Thermal Power Plant under Crosswind Condition with Evolution Strategies Algorithm

Author

Listed:
  • Zhao Li

    (Key Laboratory of Power Station Energy Transfer Conversion and System, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Ministry of Education, Beijing 102206, China)

  • Huimin Wei

    (Key Laboratory of Power Station Energy Transfer Conversion and System, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Ministry of Education, Beijing 102206, China)

  • Tao Wu

    (Key Laboratory of Power Station Energy Transfer Conversion and System, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Ministry of Education, Beijing 102206, China)

  • Xiaoze Du

    (Key Laboratory of Power Station Energy Transfer Conversion and System, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Ministry of Education, Beijing 102206, China)

Abstract

Crosswind has an adverse impact on the performance of an indirect dry cooling system. In order to mitigate the adverse influence, this study redistributed the circulating cooling water among air-cooled heat exchanger sectors so that the performance of the indirect dry cooling system could be improved. An evolution strategies algorithm combined with numerical effectiveness-based heat exchanger model was established to minimize the operation costs of the whole system. Based on a 660 MW practical power plant, optimal circulating cooling water operation strategies under varied crosswind speeds and ambient temperatures were calculated to show its application. According to the calculated results, the performance of the indirect dry cooling system could be enhanced by optimizing circulating cooling water distribution under any crosswind speed, especially under high ambient wind speeds. There is a slight promotion of the coal savings with a rise in ambient temperature: improvements of about 5%. The standard coal consumption rate could save as much as 2.50 g/kWh under crosswind speed of 10 m s −1 and ambient temperature of 32 °C, compared to the 0.1 g/kWh under crosswind speed of 2 m s −1 and ambient temperature of 32 °C.

Suggested Citation

  • Zhao Li & Huimin Wei & Tao Wu & Xiaoze Du, 2021. "Optimization for Circulating Cooling Water Distribution of Indirect Dry Cooling System in a Thermal Power Plant under Crosswind Condition with Evolution Strategies Algorithm," Energies, MDPI, vol. 14(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1167-:d:503775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Weiliang & Zhang, Hai & Li, Zheng & Lv, Junfu & Ni, Weidou & Li, Yongsheng, 2016. "Adoption of enclosure and windbreaks to prevent the degradation of the cooling performance for a natural draft dry cooling tower under crosswind conditions," Energy, Elsevier, vol. 116(P2), pages 1360-1369.
    2. Zhao, Yuanbin & Sun, Fengzhong & Li, Yan & Long, Guoqing & Yang, Zhi, 2015. "Numerical study on the cooling performance of natural draft dry cooling tower with vertical delta radiators under constant heat load," Applied Energy, Elsevier, vol. 149(C), pages 225-237.
    3. Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Modeling the performance of the indirect dry cooling system in a thermal power generating unit under variable ambient conditions," Energy, Elsevier, vol. 169(C), pages 625-636.
    4. Wei, Huimin & Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Entransy analysis optimization of cooling water flow distribution in a dry cooling tower of power plant under summer crosswinds," Energy, Elsevier, vol. 166(C), pages 1229-1240.
    5. Wang, Weiliang & Zhang, Hai & Liu, Pei & Li, Zheng & Lv, Junfu & Ni, Weidou, 2017. "The cooling performance of a natural draft dry cooling tower under crosswind and an enclosure approach to cooling efficiency enhancement," Applied Energy, Elsevier, vol. 186(P3), pages 336-346.
    6. Abad, A. & Elipe, A., 2018. "Evolution strategies for computing periodic orbits," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 251-261.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Modeling the performance of the indirect dry cooling system in a thermal power generating unit under variable ambient conditions," Energy, Elsevier, vol. 169(C), pages 625-636.
    2. Huiqian Guo & Yue Yang & Tongrui Cheng & Hanyu Zhou & Weijia Wang & Xiaoze Du, 2021. "Tower Configuration Impacts on the Thermal and Flow Performance of Steel-Truss Natural Draft Dry Cooling System," Energies, MDPI, vol. 14(7), pages 1-17, April.
    3. Kong, Yanqiang & Wang, Weijia & Yang, Lijun & Du, Xiaoze, 2020. "Energy efficient strategies for anti-freezing of air-cooled heat exchanger," Applied Energy, Elsevier, vol. 261(C).
    4. Li, Xiaoxiao & Gurgenci, Hal & Guan, Zhiqiang & Wang, Xurong & Duniam, Sam, 2017. "Measurements of crosswind influence on a natural draft dry cooling tower for a solar thermal power plant," Applied Energy, Elsevier, vol. 206(C), pages 1169-1183.
    5. Wei, Huimin & Huang, Xianwei & Chen, Lin & Yang, Lijun & Du, Xiaoze, 2020. "Performance prediction and cost-effectiveness analysis of a novel natural draft hybrid cooling system for power plants," Applied Energy, Elsevier, vol. 262(C).
    6. Sha Liu & Jiong Shen, 2022. "Modeling of Large-Scale Thermal Power Plants for Performance Prediction in Deep Peak Shaving," Energies, MDPI, vol. 15(9), pages 1-18, April.
    7. Mohan Liu & Lei Chen & Kaijun Jiang & Xiaohui Zhou & Zongyang Zhang & Hanyu Zhou & Weijia Wang & Lijun Yang & Yuguang Niu, 2021. "Investigation of Thermo-Flow Characteristics of Natural Draft Dry Cooling Systems Designed with Only One Tower in 2 × 660 MW Power Plants," Energies, MDPI, vol. 14(5), pages 1-18, February.
    8. Lu, Yuanshen & Klimenko, Alexander & Russell, Hugh & Dai, Yuchen & Warner, John & Hooman, Kamel, 2018. "A conceptual study on air jet-induced swirling plume for performance improvement of natural draft cooling towers," Applied Energy, Elsevier, vol. 217(C), pages 496-508.
    9. Weijia Wang & Lei Chen & Xianwei Huang & Lijun Yang & Xiaoze Du, 2017. "Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies," Energies, MDPI, vol. 10(12), pages 1-18, December.
    10. Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Transient behavior of the cold end system in an indirect dry cooling thermal power plant under varying operating conditions," Energy, Elsevier, vol. 181(C), pages 1202-1212.
    11. Yanqiang Kong & Weijia Wang & Zhitao Zuo & Lijun Yang & Xiaoze Du & Chao Xu & Yongping Yang, 2019. "Influencing Mechanisms of a Crosswind on the Thermo-Hydraulic Characteristics of a Large-Scale Air-Cooled Heat Exchanger," Energies, MDPI, vol. 12(6), pages 1-29, March.
    12. Hu, Hemin & Li, Zhigang & Jiang, Yuyan & Du, Xiaoze, 2018. "Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system," Energy, Elsevier, vol. 147(C), pages 729-741.
    13. Li, Xiaoxiao & Duniam, Sam & Gurgenci, Hal & Guan, Zhiqiang & Veeraragavan, Anand, 2017. "Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant," Applied Energy, Elsevier, vol. 193(C), pages 15-27.
    14. Sun, Yubiao & Guan, Zhiqiang & Gurgenci, Hal & Wang, Jianyong & Dong, Peixin & Hooman, Kamel, 2019. "Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants," Energy, Elsevier, vol. 168(C), pages 273-284.
    15. Liu, Hua & Wu, Zhiyong & Zhang, Bingjian & Chen, Qinglin & Pan, Ming & Ren, Jingzheng & He, Chang, 2023. "A large-scale stochastic simulation-based thermodynamic optimization for the hybrid closed circuit cooling tower system with parallel computing," Energy, Elsevier, vol. 283(C).
    16. Zhonghua Wang & Zenggang Yue & Wei Wang & Chenghui Ma & Xiaoguang Li & Changmin Guo & Yuanbin Zhao, 2024. "Study on the Influence of Circulating Water Bypass on the Thermal and Anti-Freezing Characteristics of High-Level Wet Cooling Tower," Energies, MDPI, vol. 17(9), pages 1-12, April.
    17. Pengbang Wei & Yufang Peng & Weidong Chen, 2022. "Climate change adaptation mechanisms and strategies of coal-fired power plants," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-22, December.
    18. Tiefeng Chen & Qian Zhao & Yaoming Zhang & Chengjun Wang & Kaiming Li & Shixing Li & Longtao Quan & Yuanbin Zhao, 2024. "Air Equalizing Mechanism in Cooling Performance Improvement of Vertical Delta-Type Radiators," Energies, MDPI, vol. 17(5), pages 1-21, February.
    19. Qian Huang & Yifan Zhi & Rongyong Zhang & Huimin Wei & Lei Xu, 2022. "Comprehensive Comparison of Hybrid Cooling of Thermal Power Generation with Airside Serial and Parallel Heat Exchange," Energies, MDPI, vol. 15(17), pages 1-28, September.
    20. Suárez de la Fuente, Santiago & Larsen, Ulrik & Pawling, Rachel & García Kerdan, Iván & Greig, Alistair & Bucknall, Richard, 2018. "Using the forward movement of a container ship navigating in the Arctic to air-cool a marine organic Rankine cycle unit," Energy, Elsevier, vol. 159(C), pages 1046-1059.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1167-:d:503775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.