IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3066-d181237.html
   My bibliography  Save this article

A Three-Stage Procedure for Controlled Islanding to Prevent Wide-Area Blackouts

Author

Listed:
  • Hongbo Shao

    (State Grid Henan Economic Research Institute, Zhengzhou 450000, China)

  • Yubin Mao

    (State Grid Henan Economic Research Institute, Zhengzhou 450000, China)

  • Yongmin Liu

    (State Grid Henan Economic Research Institute, Zhengzhou 450000, China)

  • Wanxun Liu

    (State Grid Henan Economic Research Institute, Zhengzhou 450000, China)

  • Sipei Sun

    (State Grid Henan Economic Research Institute, Zhengzhou 450000, China)

  • Peng Jia

    (State Grid Henan Economic Research Institute, Zhengzhou 450000, China)

  • Fufeng Miao

    (State Grid Henan Economic Research Institute, Zhengzhou 450000, China)

  • Li Yang

    (School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Chang Han

    (School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Bo Zhang

    (Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA)

Abstract

Controlled islanding has been proposed as a last resort action to stop blackouts from happening when all standard methods have failed. Successful controlled islanding has to deal with three important issues: when, and where to island, and the evaluation of the dynamic stability in each island after islanding. This paper provides a framework for preventing wide-area blackouts using wide area measurement systems (WAMS), which consists of three stages to execute a successful islanding strategy. Normally, power system collapses and blackouts occur shortly after a cascading outage stage. Using such circumstances, an adapted single machine equivalent (SIME) method was used online to determine transient stability before blackout was imminent, and was then employed to determine when to island based on transient instability. In addition, SIME was adopted to assess the dynamic stability in each island after islanding, and to confirm that the chosen candidate island cutsets were stable before controlled islanding was undertaken. To decide where to island, all possible islanding cutsets were provided using the power flow (PF) tracing method. SIME helped to find the best candidate islanding cutset with the minimal PF imbalance, which is also a transiently stable islanding strategy. In case no possible island cutset existed, corresponding corrective actions such as load shedding and critical generator tripping, were performed in each formed island. Finally, an IEEE 39-bus power system with 10 units was employed to test this framework for a three-stage controlled islanding strategy to prevent imminent blackouts.

Suggested Citation

  • Hongbo Shao & Yubin Mao & Yongmin Liu & Wanxun Liu & Sipei Sun & Peng Jia & Fufeng Miao & Li Yang & Chang Han & Bo Zhang, 2018. "A Three-Stage Procedure for Controlled Islanding to Prevent Wide-Area Blackouts," Energies, MDPI, vol. 11(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3066-:d:181237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3066/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3066/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xie, Dunjian & Hui, Hongxun & Ding, Yi & Lin, Zhenzhi, 2018. "Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals," Applied Energy, Elsevier, vol. 216(C), pages 338-347.
    2. Honglei Song & Junyong Wu & Kui Wu, 2014. "A Wide-Area Measurement Systems-Based Adaptive Strategy for Controlled Islanding in Bulk Power Systems," Energies, MDPI, vol. 7(4), pages 1-27, April.
    3. Chang Han & Yuxuan Zhao & Zhenzhi Lin & Yi Ding & Li Yang & Guanqiang Lin & Tianwen Mo & Xiaojun Ye, 2018. "Critical Lines Identification for Skeleton-Network of Power Systems under Extreme Weather Conditions Based on the Modified VIKOR Method," Energies, MDPI, vol. 11(6), pages 1-18, May.
    4. Hui, Hongxun & Ding, Yi & Liu, Weidong & Lin, You & Song, Yonghua, 2017. "Operating reserve evaluation of aggregated air conditioners," Applied Energy, Elsevier, vol. 196(C), pages 218-228.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    2. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
    3. Mir Sayed Shah Danish & Tomonobu Senjyu & Sayed Mir Shah Danish & Najib Rahman Sabory & Narayanan K & Paras Mandal, 2019. "A Recap of Voltage Stability Indices in the Past Three Decades," Energies, MDPI, vol. 12(8), pages 1-18, April.
    4. Ding, Yi & Cui, Wenqi & Zhang, Shujun & Hui, Hongxun & Qiu, Yiwei & Song, Yonghua, 2019. "Multi-state operating reserve model of aggregate thermostatically-controlled-loads for power system short-term reliability evaluation," Applied Energy, Elsevier, vol. 241(C), pages 46-58.
    5. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    6. Zhenzhi Lin & Yuxuan Zhao & Shengyuan Liu & Fushuan Wen & Yi Ding & Li Yang & Chang Han & Hao Zhou & Hongwei Wu, 2018. "A New Indicator of Transient Stability for Controlled Islanding of Power Systems: Critical Islanding Time," Energies, MDPI, vol. 11(11), pages 1-10, November.
    7. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    8. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    9. Shan, Kui & Wang, Shengwei, 2017. "Energy efficient design and control of cleanroom environment control systems in subtropical regions – A comparative analysis and on-site validation," Applied Energy, Elsevier, vol. 204(C), pages 582-595.
    10. Tao Jin & Fuliang Chu & Cong Ling & Daniel Legrand Mon Nzongo, 2015. "RETRACTED: A Robust WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology," Energies, MDPI, vol. 8(4), pages 1-19, April.
    11. Jonglak Pahasa & Potejanasak Potejana & Issarachai Ngamroo, 2021. "Multi-Objective Decentralized Model Predictive Control for Inverter Air Conditioner Control of Indoor Temperature and Frequency Stabilization in Microgrid," Energies, MDPI, vol. 14(21), pages 1-22, October.
    12. Jun Dong & Dongxue Wang & Dongran Liu & Palidan Ainiwaer & Linpeng Nie, 2019. "Operation Health Assessment of Power Market Based on Improved Matter-Element Extension Cloud Model," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    13. Yongzhu Hua & Qiangqiang Xie & Liang Zheng & Jiadong Cui & Lihuan Shao & Weiwei Hu, 2022. "Coordinated Voltage Control Strategy by Optimizing the Limited Regulation Capacity of Air Conditioners," Energies, MDPI, vol. 15(9), pages 1-14, April.
    14. Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
    15. Chen, Xiaodong & Ge, Xinxin & Sun, Rongfu & Wang, Fei & Mi, Zengqiang, 2024. "A SVM based demand response capacity prediction model considering internal factors under composite program," Energy, Elsevier, vol. 300(C).
    16. Shao, Junqiang & Huang, Zhiyuan & Chen, Yugui & Li, Depeng & Xu, Xiangguo, 2023. "A practical application-oriented model predictive control algorithm for direct expansion (DX) air-conditioning (A/C) systems that balances thermal comfort and energy consumption," Energy, Elsevier, vol. 269(C).
    17. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    18. Wu, Xin & Yao, Lijuan & Pi, Tanxin & Liu, Yuhang & Li, Xiang & Gong, Gangjun, 2023. "Virtual-real interaction control of hybrid load system for low-carbon energy services," Applied Energy, Elsevier, vol. 330(PB).
    19. Kai Ma & Chenliang Yuan & Jie Yang & Zhixin Liu & Xinping Guan, 2017. "Switched Control Strategies of Aggregated Commercial HVAC Systems for Demand Response in Smart Grids," Energies, MDPI, vol. 10(7), pages 1-18, July.
    20. Oshnoei, Arman & Kheradmandi, Morteza & Blaabjerg, Frede & Hatziargyriou, Nikos D. & Muyeen, S.M. & Anvari-Moghaddam, Amjad, 2022. "Coordinated control scheme for provision of frequency regulation service by virtual power plants," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3066-:d:181237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.