IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v67y2019i6p1520-1542.html
   My bibliography  Save this article

Dynamic Electricity Pricing to Smart Homes

Author

Listed:
  • Daniel Adelman

    (Booth School of Business, University of Chicago, Chicago, Illinois 60637)

  • Canan Uçkun

    (College of Business Administration, University of Illinois at Chicago, Chicago, Illinois 60607)

Abstract

With the rapid growth in residential smart meters across the United States in recent years, most homes in the United States will soon be capable of moving to time-varying prices for electricity. We develop a methodology for studying the welfare impacts of different pricing strategies on an electricity market when homes deploy smart, price-responsive appliances with forward-looking capabilities. Without assuming any functional form for dynamic prices, we show conditions under which asymptotically, as the number of homes increases, social welfare–maximizing price schedules in equilibrium are linear in load, are the same for all homes, and incrementally equal expected marginal supply costs over equilibrium loads. We provide an algorithm to compute equilibria for a large population. Using real-world data to calibrate a smart thermostat model, we compare this dynamic pricing strategy against flat and peak pricing strategies when smart thermostats are deployed across ComEd’s service region of approximately 3.5 million residential homes. We show that dynamic pricing in equilibrium dominates these competing pricing strategies and measure the expected improvements as smart thermostats are increasingly deployed. As compared against the current status quo of relatively few smart thermostats and flat pricing, we reduce adopters’ monthly power bills and generation costs from air conditioning loads by 41% and 35%, respectively, while simultaneously increasing social welfare and consumer surplus. Despite these benefits, supplier surplus from adopters decreases by half.

Suggested Citation

  • Daniel Adelman & Canan Uçkun, 2019. "Dynamic Electricity Pricing to Smart Homes," Operations Research, INFORMS, vol. 67(6), pages 1520-1542, November.
  • Handle: RePEc:inm:oropre:v:67:y:2019:i:6:p:1520-1542
    DOI: 10.1287/opre.2019.1882
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2019.1882
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2019.1882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul Joskow & Jean Tirole, 2006. "Retail electricity competition," RAND Journal of Economics, RAND Corporation, vol. 37(4), pages 799-815, December.
    2. Paul Joskow & Jean Tirole, 2007. "Reliability and competitive electricity markets," RAND Journal of Economics, RAND Corporation, vol. 38(1), pages 60-84, March.
    3. Faruqui, Ahmad & Hledik, Ryan & Tsoukalis, John, 2009. "The Power of Dynamic Pricing," The Electricity Journal, Elsevier, vol. 22(3), pages 42-56, April.
    4. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    5. Kathleen Spees & Lester Lave, 2008. "Impacts of Responsive Load in PJM: Load Shifting and Real Time Pricing," The Energy Journal, , vol. 29(2), pages 101-122, April.
    6. Chao, Hung-po, 2010. "Price-Responsive Demand Management for a Smart Grid World," The Electricity Journal, Elsevier, vol. 23(1), pages 7-20, January.
    7. Frank A. Wolak, 2011. "Do Residential Customers Respond to Hourly Prices? Evidence from a Dynamic Pricing Experiment," American Economic Review, American Economic Association, vol. 101(3), pages 83-87, May.
    8. Paul Joskow & Jean Tirole, 2006. "Retail electricity competition," RAND Journal of Economics, The RAND Corporation, vol. 37(4), pages 799-815, December.
    9. Roger E. Bohn & Michael C. Caramanis & Fred C. Schweppe, 1984. "Optimal Pricing in Electrical Networks over Space and Time," RAND Journal of Economics, The RAND Corporation, vol. 15(3), pages 360-376, Autumn.
    10. William W. Hogan, 2002. "Energy Modeling for Policy Studies," Operations Research, INFORMS, vol. 50(1), pages 89-95, February.
    11. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    12. Paul L. Joskow, 1976. "Contributions to the Theory of Marginal Cost Pricing," Bell Journal of Economics, The RAND Corporation, vol. 7(1), pages 197-206, Spring.
    13. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    14. Crew, Michael A & Fernando, Chitru S & Kleindorfer, Paul R, 1995. "The Theory of Peak-Load Pricing: A Survey," Journal of Regulatory Economics, Springer, vol. 8(3), pages 215-248, November.
    15. Paul L. Joskow & Catherine D. Wolfram, 2012. "Dynamic Pricing of Electricity," American Economic Review, American Economic Association, vol. 102(3), pages 381-385, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Hsiu-Chuan & Ghaddar, Bissan & Nathwani, Jatin, 2022. "Shared community energy storage allocation and optimization," Applied Energy, Elsevier, vol. 318(C).
    2. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    3. Xie, Lei & Guo, Guangtao & Chen, Jiao, 2024. "Bundling products and service on influencer channels," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    4. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anette Boom & Sebastian Schwenen, 2021. "Is real-time pricing smart for consumers?," Journal of Regulatory Economics, Springer, vol. 60(2), pages 193-213, December.
    2. Mier, Mathias & Weissbart, Christoph, 2020. "Power markets in transition: Decarbonization, energy efficiency, and short-term demand response," Energy Economics, Elsevier, vol. 86(C).
    3. Boom, Anette & Schwenen, Sebastian, 2012. "Real-time Pricing in Power Markets: Who Gains?," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 66062, Verein für Socialpolitik / German Economic Association.
    4. Mathias Mier, 2018. "Policy Implications of a World with Renewables, Limited Dispatchability, and Fixed Load," Working Papers V-412-18, University of Oldenburg, Department of Economics, revised Jul 2018.
    5. Fang, Debin & Wang, Pengyu, 2023. "Optimal real-time pricing and electricity package by retail electric providers based on social learning," Energy Economics, Elsevier, vol. 117(C).
    6. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    7. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    8. Poletti, Steve, 2009. "Government procurement of peak capacity in the New Zealand electricity market," Energy Policy, Elsevier, vol. 37(9), pages 3409-3417, September.
    9. Cl'emence Alasseur & Ivar Ekeland & Romuald Elie & Nicol'as Hern'andez Santib'a~nez & Dylan Possamai, 2017. "An adverse selection approach to power pricing," Papers 1706.01934, arXiv.org, revised Sep 2019.
    10. Helm, Carsten & Mier, Mathias, 2016. "Efficient diffusion of renewable energies: A roller-coaster ride," VfS Annual Conference 2016 (Augsburg): Demographic Change 145893, Verein für Socialpolitik / German Economic Association.
    11. Helm, Carsten & Mier, Mathias, 2019. "On the efficient market diffusion of intermittent renewable energies," Energy Economics, Elsevier, vol. 80(C), pages 812-830.
    12. Peter Cramton & Axel Ockenfels & Steven Stoft, 2013. "Capacity Market Fundamentals," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    13. van Kooten, G. Cornelis, 2015. "All you want to know about the Economics of Wind Power," Working Papers 241693, University of Victoria, Resource Economics and Policy.
    14. Hung-po Chao, 2011. "Demand response in wholesale electricity markets: the choice of customer baseline," Journal of Regulatory Economics, Springer, vol. 39(1), pages 68-88, February.
    15. De Castro, Luciano & Dutra, Joisa, 2013. "Paying for the smart grid," Energy Economics, Elsevier, vol. 40(S1), pages 74-84.
    16. Antweiler, Werner & Muesgens, Felix, 2021. "On the long-term merit order effect of renewable energies," Energy Economics, Elsevier, vol. 99(C).
    17. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    18. Pio Baake & Sebastian Schwenen & Christian von Hirschhausen, 2020. "Local Power Markets," Discussion Papers of DIW Berlin 1904, DIW Berlin, German Institute for Economic Research.
    19. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    20. Takanori Ida, Kayo Murakami, and Makoto Tanaka, 2016. "Electricity demand response in Japan: Experimental evidence from a residential photovoltaic power-generation system," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:67:y:2019:i:6:p:1520-1542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.