IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v216y2018icp183-194.html
   My bibliography  Save this article

A method for determining the optimal delivered hydrogen pressure for fuel cell electric vehicles

Author

Listed:
  • Lin, Zhenhong
  • Ou, Shiqi
  • Elgowainy, Amgad
  • Reddi, Krishna
  • Veenstra, Mike
  • Verduzco, Laura

Abstract

Fuel cell electric vehicles (FCEVs) are considered an important part of a portfolio of options to address challenges in the transportation sector, including energy security and pollution reduction. The market success of FCEVs depends on standardization of key vehicle and infrastructure parameters, including the delivered hydrogen pressure (DHP). This study developed and utilized the Hydrogen Optimal Pressure (HOP) model to systematically identify the optimal DHP among 350, 500, and 700 bar toward the lowest total consumer cost and analyze how the optimal DHP may be affected by attributes of drivers, vehicles, and hydrogen refueling stations. The DHP of 700 bar a robustly better choice than 350 bar or 500 bar for Region Strategy, regardless of fuel availability, FCEV adoption, driver types, time values, and fuel economies. A DHP of 300 or 500 bar can the winner in Cluster Strategy if combined with certain assumptions of driving patterns and time value. the optimal pressure is found to be very sensitive to fuel availability, fuel economy, driving pattern and time value. The appeal of a higher DHP such as 700 bar (or even higher) is more obvious during the early market stages, when the number of hydrogen stations is limited and early FCEV consumers likely have higher time value, and thus may be willing to pay more for the increased range with higher DHP. Future research on mixed DHPs within a station and across stations is suggested.

Suggested Citation

  • Lin, Zhenhong & Ou, Shiqi & Elgowainy, Amgad & Reddi, Krishna & Veenstra, Mike & Verduzco, Laura, 2018. "A method for determining the optimal delivered hydrogen pressure for fuel cell electric vehicles," Applied Energy, Elsevier, vol. 216(C), pages 183-194.
  • Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:183-194
    DOI: 10.1016/j.apenergy.2018.02.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yang & Campana, Pietro Elia & Lundblad, Anders & Yan, Jinyue, 2017. "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied Energy, Elsevier, vol. 201(C), pages 397-411.
    2. Nicholas, Michael A & Ogden, J, 2010. "An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California," Institute of Transportation Studies, Working Paper Series qt92b440q8, Institute of Transportation Studies, UC Davis.
    3. Özdemir, Enver Doruk & Hartmann, Niklas, 2012. "Impact of electric range and fossil fuel price level on the economics of plug-in hybrid vehicles and greenhouse gas abatement costs," Energy Policy, Elsevier, vol. 46(C), pages 185-192.
    4. Li, Bei & Roche, Robin & Paire, Damien & Miraoui, Abdellatif, 2017. "Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation," Applied Energy, Elsevier, vol. 205(C), pages 1244-1259.
    5. Changjun Zhang, 2016. "Hydrogen storage: Letting it go," Nature Energy, Nature, vol. 1(1), pages 1-1, January.
    6. Greene, David L., 1985. "Estimating daily vehicle usage distributions and the implications for limited-range vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 347-358, August.
    7. Hu, Xiaosong & Johannesson, Lars & Murgovski, Nikolce & Egardt, Bo, 2015. "Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus," Applied Energy, Elsevier, vol. 137(C), pages 913-924.
    8. Xu, Liangfei & Mueller, Clemens David & Li, Jianqiu & Ouyang, Minggao & Hu, Zunyan, 2015. "Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 664-674.
    9. Zhenhong Lin, 2014. "Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers," Transportation Science, INFORMS, vol. 48(4), pages 635-650, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Mingzheng & Chen, Ying & Cheng, Zhengdong & Wang, Chao & Luo, Xianglong & Bu, Enqi & Jiang, Zhiqiang & Liang, Bo & Shu, Riyang & Song, Qingbin, 2019. "Hydrogen production from partial oxidation of propane: Effect of SiC addition on Ni/Al2O3 catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Lahnaoui, Amin & Wulf, Christina & Heinrichs, Heidi & Dalmazzone, Didier, 2018. "Optimizing hydrogen transportation system for mobility by minimizing the cost of transportation via compressed gas truck in North Rhine-Westphalia," Applied Energy, Elsevier, vol. 223(C), pages 317-328.
    3. Wang, Chao & Liao, Mingzheng & Liang, Bo & Jiang, Zhiqiang & Zhong, Weilin & Chen, Ying & Luo, Xianglong & Shu, Riyang & Tian, Zhipeng & Lei, Libin, 2021. "Enhancement effect of catalyst support on indirect hydrogen production from propane partial oxidation towards commercial solid oxide fuel cell (SOFC) applications," Applied Energy, Elsevier, vol. 288(C).
    4. Qian, Jin-yuan & Chen, Min-rui & Gao, Zhi-xin & Jin, Zhi-jiang, 2019. "Mach number and energy loss analysis inside multi-stage Tesla valves for hydrogen decompression," Energy, Elsevier, vol. 179(C), pages 647-654.
    5. Hao, Xu & Lin, Zhenhong & Wang, Hewu & Ou, Shiqi & Ouyang, Minggao, 2020. "Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: An expanded total ownership cost approach," Applied Energy, Elsevier, vol. 275(C).
    6. Osama A. Marzouk, 2024. "Portrait of the Decarbonization and Renewables Penetration in Oman’s Energy Mix, Motivated by Oman’s National Green Hydrogen Plan," Energies, MDPI, vol. 17(19), pages 1-31, September.
    7. Li, Jigang & Guo, Yanru & Jiang, Xiaojing & Li, Shuan & Li, Xingguo, 2020. "Hydrogen storage performances, kinetics and microstructure of Ti1.02Cr1.0Fe0.7-xMn0.3Alx alloy by Al substituting for Fe," Renewable Energy, Elsevier, vol. 153(C), pages 1140-1154.
    8. Jiang, Zhiqiang & Liao, Mingzheng & Qi, Ji & Wang, Chao & Chen, Ying & Luo, Xianglong & Liang, Bo & Shu, Riyang & Song, Qingbin, 2020. "Enhancing hydrogen production from propane partial oxidation via CO preferential oxidation and CO2 sorption towards solid oxide fuel cell (SOFC) applications," Renewable Energy, Elsevier, vol. 156(C), pages 303-313.
    9. Wen, Chuang & Rogie, Brice & Kærn, Martin Ryhl & Rothuizen, Erasmus, 2020. "A first study of the potential of integrating an ejector in hydrogen fuelling stations for fuelling high pressure hydrogen vehicles," Applied Energy, Elsevier, vol. 260(C).
    10. Xiao, Runfeng & Tian, Gui & Hou, Yu & Chen, Shuangtao & Cheng, Cheng & Chen, Liang, 2020. "Effects of cooling-recovery venting on the performance of cryo-compressed hydrogen storage for automotive applications," Applied Energy, Elsevier, vol. 269(C).
    11. Nawei Liu & Fei Xie & Zhenhong Lin & Mingzhou Jin, 2020. "Evaluating national hydrogen refueling infrastructure requirement and economic competitiveness of fuel cell electric long-haul trucks," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 477-493, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    2. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    3. Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.
    4. Xun, Qian & Murgovski, Nikolce & Liu, Yujing, 2022. "Chance-constrained robust co-design optimization for fuel cell hybrid electric trucks," Applied Energy, Elsevier, vol. 320(C).
    5. David Grosspietsch & Marissa Saenger & Bastien Girod, 2019. "Matching decentralized energy production and local consumption: A review of renewable energy systems with conversion and storage technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(4), July.
    6. Peng, Fei & Zhao, Yuanzhe & Chen, Ting & Zhang, Xuexia & Chen, Weirong & Zhou, Donghua & Li, Qi, 2018. "Development of robust suboptimal real-time power sharing strategy for modern fuel cell based hybrid tramways considering operational uncertainties and performance degradation," Applied Energy, Elsevier, vol. 226(C), pages 503-521.
    7. Guo, Zhongjie & Wei, Wei & Chen, Laijun & Zhang, Xiaoping & Mei, Shengwei, 2021. "Equilibrium model of a regional hydrogen market with renewable energy based suppliers and transportation costs," Energy, Elsevier, vol. 220(C).
    8. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    9. Bartolucci, Lorenzo & Cordiner, Stefano & Mulone, Vincenzo & Pasquale, Stefano, 2019. "Fuel cell based hybrid renewable energy systems for off-grid telecom stations: Data analysis and system optimization," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Jiajun Liu & Huachao Dong & Tianxu Jin & Li Liu & Babak Manouchehrinia & Zuomin Dong, 2018. "Optimization of Hybrid Energy Storage Systems for Vehicles with Dynamic On-Off Power Loads Using a Nested Formulation," Energies, MDPI, vol. 11(10), pages 1-25, October.
    11. Le, Son Tay & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Teodosio, Birch & Ngo, Tuan Duc, 2024. "Comparative life cycle assessment of renewable energy storage systems for net-zero buildings with varying self-sufficient ratios," Energy, Elsevier, vol. 290(C).
    12. Zhenhong Lin, 2014. "Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers," Transportation Science, INFORMS, vol. 48(4), pages 635-650, November.
    13. Le, Tay Son & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Ngo, Tuan Duc, 2023. "Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage," Applied Energy, Elsevier, vol. 336(C).
    14. Murray, Portia & Orehounig, Kristina & Grosspietsch, David & Carmeliet, Jan, 2018. "A comparison of storage systems in neighbourhood decentralized energy system applications from 2015 to 2050," Applied Energy, Elsevier, vol. 231(C), pages 1285-1306.
    15. Ma, Tengfei & Pei, Wei & Deng, Wei & Xiao, Hao & Yang, Yanhong & Tang, Chenghong, 2022. "A Nash bargaining-based cooperative planning and operation method for wind-hydrogen-heat multi-agent energy system," Energy, Elsevier, vol. 239(PE).
    16. Dong, Xiangxiang & Wu, Jiang & Xu, Zhanbo & Liu, Kun & Guan, Xiaohong, 2022. "Optimal coordination of hydrogen-based integrated energy systems with combination of hydrogen and water storage," Applied Energy, Elsevier, vol. 308(C).
    17. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Ker, P.J. & Majlan, E.H. & Wan Daud, W.R., 2018. "Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 2061-2079.
    18. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    19. Xie, Fei & Lin, Zhenhong, 2017. "Market-driven automotive industry compliance with fuel economy and greenhouse gas standards: Analysis based on consumer choice," Energy Policy, Elsevier, vol. 108(C), pages 299-311.
    20. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:216:y:2018:i:c:p:183-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.