IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v252y2019ic23.html
   My bibliography  Save this article

Fuel cell based hybrid renewable energy systems for off-grid telecom stations: Data analysis and system optimization

Author

Listed:
  • Bartolucci, Lorenzo
  • Cordiner, Stefano
  • Mulone, Vincenzo
  • Pasquale, Stefano

Abstract

The previous works on the use of PEM Fuel Cell based power supply system for the operation of off-grid RBS (Radio Base Stations) sites showed a strong influence of system design parameters on the energy conversion performance.

Suggested Citation

  • Bartolucci, Lorenzo & Cordiner, Stefano & Mulone, Vincenzo & Pasquale, Stefano, 2019. "Fuel cell based hybrid renewable energy systems for off-grid telecom stations: Data analysis and system optimization," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:252:y:2019:i:c:23
    DOI: 10.1016/j.apenergy.2019.113386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919310608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Obara, Shin'ya & Hamanaka, Ryo & El-Sayed, Abeer Galal, 2019. "Design methods for microgrids to address seasonal energy availability – A case study of proposed Showa Antarctic Station retrofits," Applied Energy, Elsevier, vol. 236(C), pages 711-727.
    2. Moretti, Luca & Astolfi, Marco & Vergara, Claudio & Macchi, Ennio & Pérez-Arriaga, Josè Ignacio & Manzolini, Giampaolo, 2019. "A design and dispatch optimization algorithm based on mixed integer linear programming for rural electrification," Applied Energy, Elsevier, vol. 233, pages 1104-1121.
    3. Li, Bei & Roche, Robin & Miraoui, Abdellatif, 2017. "Microgrid sizing with combined evolutionary algorithm and MILP unit commitment," Applied Energy, Elsevier, vol. 188(C), pages 547-562.
    4. Banjo A. Aderemi & S. P. Daniel Chowdhury & Thomas O. Olwal & Adnan M. Abu-Mahfouz, 2018. "Techno-Economic Feasibility of Hybrid Solar Photovoltaic and Battery Energy Storage Power System for a Mobile Cellular Base Station in Soshanguve, South Africa," Energies, MDPI, vol. 11(6), pages 1-26, June.
    5. Li, Bei & Roche, Robin & Paire, Damien & Miraoui, Abdellatif, 2017. "Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation," Applied Energy, Elsevier, vol. 205(C), pages 1244-1259.
    6. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    7. Chong, Lee Wai & Wong, Yee Wan & Rajkumar, Rajprasad Kumar & Rajkumar, Rajpartiban Kumar & Isa, Dino, 2016. "Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 174-189.
    8. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    9. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    10. Margaret Amutha, W. & Rajini, V., 2015. "Techno-economic evaluation of various hybrid power systems for rural telecom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 553-561.
    11. Eriksson, E.L.V. & Gray, E.MacA., 2017. "Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review," Applied Energy, Elsevier, vol. 202(C), pages 348-364.
    12. Kavadias, K.A. & Apostolou, D. & Kaldellis, J.K., 2018. "Modelling and optimisation of a hydrogen-based energy storage system in an autonomous electrical network," Applied Energy, Elsevier, vol. 227(C), pages 574-586.
    13. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    14. Zhang, Yang & Campana, Pietro Elia & Lundblad, Anders & Yan, Jinyue, 2017. "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied Energy, Elsevier, vol. 201(C), pages 397-411.
    15. Bartolucci, Lorenzo & Cordiner, Stefano & Mulone, Vincenzo & Rocco, Vittorio & Rossi, Joao Luis, 2018. "Hybrid renewable energy systems for renewable integration in microgrids: Influence of sizing on performance," Energy, Elsevier, vol. 152(C), pages 744-758.
    16. Cordiner, S. & Mulone, V. & Giordani, A. & Savino, M. & Tomarchio, G. & Malkow, T. & Tsotridis, G. & Pilenga, A. & Karlsen, M.L. & Jensen, J., 2017. "Fuel cell based Hybrid Renewable Energy Systems for off-grid telecom stations: Data analysis from on field demonstration tests," Applied Energy, Elsevier, vol. 192(C), pages 508-518.
    17. Bruni, G. & Cordiner, S. & Mulone, V., 2014. "Domestic distributed power generation: Effect of sizing and energy management strategy on the environmental efficiency of a photovoltaic-battery-fuel cell system," Energy, Elsevier, vol. 77(C), pages 133-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janis Kramens & Megija Valtere & Guntars Krigers & Vladimirs Kirsanovs & Dagnija Blumberga, 2024. "Ranking of Independent Small-Scale Electricity Generation Systems," Clean Technol., MDPI, vol. 6(1), pages 1-12, February.
    2. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2024. "Sustainable and self-sufficient social home through a combined PV‑hydrogen pilot," Applied Energy, Elsevier, vol. 363(C).
    3. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. He, Yi & Guo, Su & Dong, Peixin & Huang, Jing & Zhou, Jianxu, 2023. "Hierarchical optimization of policy and design for standalone hybrid power systems considering lifecycle carbon reduction subsidy," Energy, Elsevier, vol. 262(PA).
    6. Sheraz Syed & Asad Arfeen & Riaz Uddin & Umaima Haider, 2021. "An Analysis of Renewable Energy Usage by Mobile Data Network Operators," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    7. Amole, Abraham Olatide & Owosibo, Rachael Abiola & Adewuyi, Oludamilare Bode & Oladipo, Stephen & Imarhiagbe, Nosagiagbon Owomano, 2024. "Comparative analysis of control strategies for solar photovoltaic/diesel power system for stand-alone applications," Renewable Energy, Elsevier, vol. 226(C).
    8. Zeljković, Čedomir & Mršić, Predrag & Erceg, Bojan & Lekić, Đorđe & Kitić, Nemanja & Matić, Petar, 2022. "Optimal sizing of photovoltaic-wind-diesel-battery power supply for mobile telephony base stations," Energy, Elsevier, vol. 242(C).
    9. Mahshid Javidsharifi & Hamoun Pourroshanfekr & Tamas Kerekes & Dezso Sera & Sergiu Spataru & Josep M. Guerrero, 2021. "Optimum Sizing of Photovoltaic and Energy Storage Systems for Powering Green Base Stations in Cellular Networks," Energies, MDPI, vol. 14(7), pages 1-21, March.
    10. Fioriti, Davide & Pintus, Salvatore & Lutzemberger, Giovanni & Poli, Davide, 2020. "Economic multi-objective approach to design off-grid microgrids: A support for business decision making," Renewable Energy, Elsevier, vol. 159(C), pages 693-704.
    11. Ana Cabrera-Tobar & Francesco Grimaccia & Sonia Leva, 2023. "Energy Resilience in Telecommunication Networks: A Comprehensive Review of Strategies and Challenges," Energies, MDPI, vol. 16(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    2. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    3. Petrelli, Marina & Fioriti, Davide & Berizzi, Alberto & Bovo, Cristian & Poli, Davide, 2021. "A novel multi-objective method with online Pareto pruning for multi-year optimization of rural microgrids," Applied Energy, Elsevier, vol. 299(C).
    4. Rigo-Mariani, Rémy & Chea Wae, Sean Ooi & Mazzoni, Stefano & Romagnoli, Alessandro, 2020. "Comparison of optimization frameworks for the design of a multi-energy microgrid," Applied Energy, Elsevier, vol. 257(C).
    5. Guo, Zhongjie & Wei, Wei & Chen, Laijun & Zhang, Xiaoping & Mei, Shengwei, 2021. "Equilibrium model of a regional hydrogen market with renewable energy based suppliers and transportation costs," Energy, Elsevier, vol. 220(C).
    6. Higinio Sánchez-Sáinz & Carlos-Andrés García-Vázquez & Francisco Llorens Iborra & Luis M. Fernández-Ramírez, 2019. "Methodology for the Optimal Design of a Hybrid Charging Station of Electric and Fuel Cell Vehicles Supplied by Renewable Energies and an Energy Storage System," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    7. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    8. Le, Son Tay & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Teodosio, Birch & Ngo, Tuan Duc, 2024. "Comparative life cycle assessment of renewable energy storage systems for net-zero buildings with varying self-sufficient ratios," Energy, Elsevier, vol. 290(C).
    9. Le, Tay Son & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Ngo, Tuan Duc, 2023. "Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage," Applied Energy, Elsevier, vol. 336(C).
    10. Subodh Kharel & Bahman Shabani, 2018. "Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables," Energies, MDPI, vol. 11(10), pages 1-17, October.
    11. Julia Schulz & Daniel Leinmüller & Adam Misik & Michael F. Zaeh, 2021. "Renewable On-Site Power Generation for Manufacturing Companies—Technologies, Modeling, and Dimensioning," Sustainability, MDPI, vol. 13(7), pages 1-27, April.
    12. He, Yi & Guo, Su & Zhou, Jianxu & Song, Guotao & Kurban, Aynur & Wang, Haowei, 2022. "The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system," Energy, Elsevier, vol. 245(C).
    13. Khawaja, Yara & Allahham, Adib & Giaouris, Damian & Patsios, Charalampos & Walker, Sara & Qiqieh, Issa, 2019. "An integrated framework for sizing and energy management of hybrid energy systems using finite automata," Applied Energy, Elsevier, vol. 250(C), pages 257-272.
    14. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    15. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    16. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    17. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    18. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2021. "Energy equipment sizing and operation optimisation for prosumer industrial SMEs – A lifetime approach," Applied Energy, Elsevier, vol. 299(C).
    19. Wilke, Christoph & Bensmann, Astrid & Martin, Stefan & Utz, Annika & Hanke-Rauschenbach, Richard, 2018. "Optimal design of a district energy system including supply for fuel cell electric vehicles," Applied Energy, Elsevier, vol. 226(C), pages 129-144.
    20. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:252:y:2019:i:c:23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.