IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v207y2017icp417-426.html
   My bibliography  Save this article

Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability

Author

Listed:
  • Barzegar, Farshad
  • Bello, Abdulhakeem
  • Dangbegnon, Julien K.
  • Manyala, Ncholu
  • Xia, Xiaohua

Abstract

This work presents results obtained from the production of low-cost carbons from expanded graphite (EG) and pinecone (PC) biomass, activated in potassium hydroxide (KOH) and finally carbonized in argon and hydrogen atmosphere. A specific surface area of 808m2g−1 and 457m2g−1 were measured for activated pinecone carbon (APC) and activated expanded graphite (AEG), respectively. The electrochemical characterization of the novel materials in a 2-electrode configuration as supercapacitor electrode shows a specific capacitance of 69Fg−1 at 0.5Ag−1, high energy density of 24.6Whkg−1 at a power density of 400Wkg−1. This asymmetric supercapacitor also exhibits outstanding stability after voltage holding at the maximum voltage for 110h, suggesting that the asymmetric device based on different carbon materials has a huge capacity for a high-performance electrode in electrochemical applications.

Suggested Citation

  • Barzegar, Farshad & Bello, Abdulhakeem & Dangbegnon, Julien K. & Manyala, Ncholu & Xia, Xiaohua, 2017. "Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability," Applied Energy, Elsevier, vol. 207(C), pages 417-426.
  • Handle: RePEc:eee:appene:v:207:y:2017:i:c:p:417-426
    DOI: 10.1016/j.apenergy.2017.05.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917306141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khosrozadeh, A. & Xing, M. & Wang, Q., 2015. "A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles," Applied Energy, Elsevier, vol. 153(C), pages 87-93.
    2. Lee, Min Seok & Choi, Hyun-Jung & Baek, Jong-Beom & Chang, Dong Wook, 2017. "Simple solution-based synthesis of pyridinic-rich nitrogen-doped graphene nanoplatelets for supercapacitors," Applied Energy, Elsevier, vol. 195(C), pages 1071-1078.
    3. Gromadskyi, Denys G. & Chae, Jung H. & Norman, Stuart A. & Chen, George Z., 2015. "Correlation of energy storage performance of supercapacitor with iso-propanol improved wettability of aqueous electrolyte on activated carbon electrodes of various apparent densities," Applied Energy, Elsevier, vol. 159(C), pages 39-50.
    4. Burke, Andrew, 2000. "Ultracapacitors: Why, How, and Where is the Technology," Institute of Transportation Studies, Working Paper Series qt9n905017, Institute of Transportation Studies, UC Davis.
    5. Li, Ya-Hao & Li, Qing-Yu & Wang, Hong-Qiang & Huang, You-Guo & Zhang, Xiao-Hui & Wu, Qiang & Gao, Hong-Quan & Yang, Jian-Hong, 2015. "Synthesis and electrochemical properties of nickel–manganese oxide on MWCNTs/CFP substrate as a supercapacitor electrode," Applied Energy, Elsevier, vol. 153(C), pages 78-86.
    6. Yuan, Chuanjun & Lin, Haibo & Lu, Haiyan & Xing, Endong & Zhang, Yusi & Xie, Bingyao, 2016. "Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors," Applied Energy, Elsevier, vol. 178(C), pages 260-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maziarka, Przemyslaw & Sommersacher, Peter & Wang, Xia & Kienzl, Norbert & Retschitzegger, Stefan & Prins, Wolter & Hedin, Niklas & Ronsse, Frederik, 2021. "Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications," Applied Energy, Elsevier, vol. 286(C).
    2. Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Liwei & Li, Hongji & Li, Mingji & Xu, Sheng & Li, Cuiping & Qu, Changqing & Zhang, Lijun & Yang, Baohe, 2016. "Lithium-ion storage capacitors achieved by CVD graphene/TaC/Ta-wires and carbon hollow spheres," Applied Energy, Elsevier, vol. 162(C), pages 197-206.
    2. Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).
    3. Yuan, Chuanjun & Lin, Haibo & Lu, Haiyan & Xing, Endong & Zhang, Yusi & Xie, Bingyao, 2016. "Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors," Applied Energy, Elsevier, vol. 178(C), pages 260-268.
    4. Zhang, Xiaofang & Xiao, Zongying & Liu, Xufei & Mei, Peng & Yang, Yingkui, 2021. "Redox-active polymers as organic electrode materials for sustainable supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    6. Simon Krüner & Christoph M. Hackl, 2022. "Nonlinear Modelling and Control of a Power Smoothing System for a Novel Wave Energy Converter Prototype," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    7. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    8. Mukhtar Yeleuov & Christopher Seidl & Tolganay Temirgaliyeva & Azamat Taurbekov & Nicholay Prikhodko & Bakytzhan Lesbayev & Fail Sultanov & Chingis Daulbayev & Serik Kumekov, 2020. "Modified Activated Graphene-Based Carbon Electrodes from Rice Husk for Supercapacitor Applications," Energies, MDPI, vol. 13(18), pages 1-10, September.
    9. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    10. Ataur Rahman & Kyaw Myo Aung & Sany Ihsan & Raja Mazuir Raja Ahsan Shah & Mansour Al Qubeissi & Mohannad T. Aljarrah, 2023. "Solar Energy Dependent Supercapacitor System with ANFIS Controller for Auxiliary Load of Electric Vehicles," Energies, MDPI, vol. 16(6), pages 1-23, March.
    11. Guangyue Gu & Youliang Lao & Yaxiong Ji & Shasha Yuan & Haijing Liu & Peng Du, 2023. "Development of hybrid super-capacitor and lead-acid battery power storage systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 159-166.
    12. A.K. Shukla & T. Prem Kumar, 2013. "Nanostructured electrode materials for electrochemical energy storage and conversion," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 14-30, January.
    13. Uzunoglu, M. & Onar, O.C. & Alam, M.S., 2009. "Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications," Renewable Energy, Elsevier, vol. 34(3), pages 509-520.
    14. Shuyue Lin & Xin Tong & Xiaowei Zhao & George Weiss, 2018. "The Parallel Virtual Infinite Capacitor Applied to DC-Link Voltage Filtering for Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-19, June.
    15. Farhan Farooq & Asad Khan & Seung June Lee & Mohammad Mahad Nadeem & Woojin Choi, 2021. "A Multi-Channel Fast Impedance Spectroscopy Instrument Developed for Quality Assurance of Super-Capacitors," Energies, MDPI, vol. 14(4), pages 1-14, February.
    16. Jooyoung Park & Gyo-Bum Chung & Jungdong Lim & Dongsu Yang, 2015. "Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming," Energies, MDPI, vol. 8(6), pages 1-21, May.
    17. Bao, Jinpeng & Liang, Chen & Lu, Haiyan & Lin, Haibo & Shi, Zhan & Feng, Shouhua & Bu, Qijing, 2018. "Facile fabrication of porous carbon microtube with surrounding carbon skeleton for long-life electrochemical capacitive energy storage," Energy, Elsevier, vol. 155(C), pages 899-908.
    18. Bajpai, Prabodh & Dash, Vaishalee, 2012. "Hybrid renewable energy systems for power generation in stand-alone applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2926-2939.
    19. Peng, Hui & Wang, Junzheng & Shen, Wei & Shi, Dawei & Huang, Yuan, 2019. "Compound control for energy management of the hybrid ultracapacitor-battery electric drive systems," Energy, Elsevier, vol. 175(C), pages 309-319.
    20. Zhang, Wenli & Lin, Nan & Liu, Debo & Xu, Jinhui & Sha, Jinxin & Yin, Jian & Tan, Xiaobo & Yang, Huiping & Lu, Haiyan & Lin, Haibo, 2017. "Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications," Energy, Elsevier, vol. 128(C), pages 618-625.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:207:y:2017:i:c:p:417-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.