IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v183y2016icp612-622.html
   My bibliography  Save this article

Efficiency analysis of a bidirectional DC/DC converter in a hybrid energy storage system for plug-in hybrid electric vehicles

Author

Listed:
  • Wang, Chun
  • Xiong, Rui
  • He, Hongwen
  • Ding, Xiaofeng
  • Shen, Weixiang

Abstract

A bidirectional (Bi) DC/DC converter is one of the key components in a hybrid energy storage system for electric vehicles and plug-in electric vehicles. Based on the detailed analysis of the losses in the converter, this paper firstly develops a model to theoretically calculate the efficiency of the converter. Then, the influences of temperature, switching frequency, duty cycle and material of switching device on the converter’s efficiency are experimentally investigated. The analysis of the experimental results has shown that (1) The efficiency at the switching frequency of 15kHz is about 2% higher than that of 25kHz. (2) The efficiency at 25°C is similar to that at 85°C for the MOSFET SiC while the efficiency at 25°C is 2% higher than that at 85°C for the IGBT Si for both buck and boost modes. (3) In buck mode, when the duty cycles are decreasing from 66.7%, 50% to 33.33%, the peak efficiencies are also decreasing from 97.6%, 94.5% to 90.3%, respectively. In boost mode, when the duty cycle is increasing from 33.33%, 50% to 75%, the peak efficiency is decreasing from 96.9%, 96.5% to 92.4%, respectively. (4) The developed model can calculate the converter’s efficiency accurately

Suggested Citation

  • Wang, Chun & Xiong, Rui & He, Hongwen & Ding, Xiaofeng & Shen, Weixiang, 2016. "Efficiency analysis of a bidirectional DC/DC converter in a hybrid energy storage system for plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 612-622.
  • Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:612-622
    DOI: 10.1016/j.apenergy.2016.08.178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916312879
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castaings, Ali & Lhomme, Walter & Trigui, Rochdi & Bouscayrol, Alain, 2016. "Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints," Applied Energy, Elsevier, vol. 163(C), pages 190-200.
    2. Sun, Fengchun & Xiong, Rui & He, Hongwen, 2016. "A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique," Applied Energy, Elsevier, vol. 162(C), pages 1399-1409.
    3. Zhang, Shuo & Xiong, Rui & Cao, Jiayi, 2016. "Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system," Applied Energy, Elsevier, vol. 179(C), pages 316-328.
    4. Song, Ziyou & Li, Jianqiu & Han, Xuebing & Xu, Liangfei & Lu, Languang & Ouyang, Minggao & Hofmann, Heath, 2014. "Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 135(C), pages 212-224.
    5. Naik, M. Venkatesh & Samuel, Paulson, 2016. "Analysis of ripple current, power losses and high efficiency of DC–DC converters for fuel cell power generating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1080-1088.
    6. Durán, E. & Andújar, J.M. & Segura, F. & Barragán, A.J., 2011. "A high-flexibility DC load for fuel cell and solar arrays power sources based on DC-DC converters," Applied Energy, Elsevier, vol. 88(5), pages 1690-1702, May.
    7. Eccher, M. & Salemi, A. & Turrini, S. & Brusa, R.S., 2015. "Measurements of power transfer efficiency in CPV cell-array models using individual DC–DC converters," Applied Energy, Elsevier, vol. 142(C), pages 396-406.
    8. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Ziyou & Li, Jianqiu & Hou, Jun & Hofmann, Heath & Ouyang, Minggao & Du, Jiuyu, 2018. "The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study," Energy, Elsevier, vol. 154(C), pages 433-441.
    2. Amine, Hartani Mohamed & Aissa, Benhammou & Rezk, Hegazy & Messaoud, Hamouda & Othmane, Adbdelkhalek & Saad, Mekhilef & Abdelkareem, Mohammad Ali, 2023. "Enhancing hybrid energy storage systems with advanced low-pass filtration and frequency decoupling for optimal power allocation and reliability of cluster of DC-microgrids," Energy, Elsevier, vol. 282(C).
    3. Lin, Cheng & Tang, Aihua & Xing, Jilei, 2017. "Evaluation of electrochemical models based battery state-of-charge estimation approaches for electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 394-404.
    4. Trovão, João P. & Silva, Mário A. & Antunes, Carlos Henggeler & Dubois, Maxime R., 2017. "Stability enhancement of the motor drive DC input voltage of an electric vehicle using on-board hybrid energy storage systems," Applied Energy, Elsevier, vol. 205(C), pages 244-259.
    5. Guo, Qingbo & Zhang, Chengming & Li, Liyi & Gerada, David & Zhang, Jiangpeng & Wang, Mingyi, 2017. "Design and implementation of a loss optimization control for electric vehicle in-wheel permanent-magnet synchronous motor direct drive system," Applied Energy, Elsevier, vol. 204(C), pages 1317-1332.
    6. Wang, Chun & Yang, Ruixin & Yu, Quanqing, 2019. "Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty," Applied Energy, Elsevier, vol. 256(C).
    7. Ding, Xiaofeng & Guo, Hong & Xiong, Rui & Chen, Feida & Zhang, Donghuai & Gerada, Chris, 2017. "A new strategy of efficiency enhancement for traction systems in electric vehicles," Applied Energy, Elsevier, vol. 205(C), pages 880-891.
    8. Wahl, Alexander & Wellmann, Christoph & Monissen, Christian & Andert, Jakob, 2023. "Active temperature control of electric drivetrains for efficiency increase," Applied Energy, Elsevier, vol. 338(C).
    9. Li, Jianwei & Xiong, Rui & Mu, Hao & Cornélusse, Bertrand & Vanderbemden, Philippe & Ernst, Damien & Yuan, Weijia, 2018. "Design and real-time test of a hybrid energy storage system in the microgrid with the benefit of improving the battery lifetime," Applied Energy, Elsevier, vol. 218(C), pages 470-478.
    10. Chengning Zhang & Xin Jin & Junqiu Li, 2017. "PTC Self-Heating Experiments and Thermal Modeling of Lithium-Ion Battery Pack in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-21, April.
    11. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Van De Sande, Wieland & Ravyts, Simon & Daenen, Michael & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2019. "Modeling and validation of a DC/DC power converter for building energy simulations: Application to BIPV systems," Applied Energy, Elsevier, vol. 240(C), pages 646-665.
    12. Hartani, Mohamed Amine & Rezk, Hegazy & Benhammou, Aissa & Hamouda, Messaoud & Abdelkhalek, Othmane & Mekhilef, Saad & Olabi, A.G., 2023. "Proposed frequency decoupling-based fuzzy logic control for power allocation and state-of-charge recovery of hybrid energy storage systems adopting multi-level energy management for multi-DC-microgrid," Energy, Elsevier, vol. 278(C).
    13. Hou, Jun & Sun, Jing & Hofmann, Heath, 2018. "Control development and performance evaluation for battery/flywheel hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 212(C), pages 919-930.
    14. Sun, Qixing & Xing, Dong & Alafnan, Hamoud & Pei, Xiaoze & Zhang, Min & Yuan, Weijia, 2019. "Design and test of a new two-stage control scheme for SMES-battery hybrid energy storage systems for microgrid applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Wang, Bin & Ma, Guangliang & Xu, Dan & Zhang, Le & Zhou, Jiahui, 2018. "Switching sliding-mode control strategy based on multi-type restrictive condition for voltage control of buck converter in auxiliary energy source," Applied Energy, Elsevier, vol. 228(C), pages 1373-1384.
    16. Li, Guidan & Yang, Zhe & Li, Bin & Bi, Huakun, 2019. "Power allocation smoothing strategy for hybrid energy storage system based on Markov decision process," Applied Energy, Elsevier, vol. 241(C), pages 152-163.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    2. Zhuang, Weichao & Ye, Jianwei & Song, Ziyou & Yin, Guodong & Li, Guangmin, 2020. "Comparison of semi-active hybrid battery system configurations for electric taxis application," Applied Energy, Elsevier, vol. 259(C).
    3. Trovão, João P. & Silva, Mário A. & Antunes, Carlos Henggeler & Dubois, Maxime R., 2017. "Stability enhancement of the motor drive DC input voltage of an electric vehicle using on-board hybrid energy storage systems," Applied Energy, Elsevier, vol. 205(C), pages 244-259.
    4. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    5. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    6. Zhifu, Wang & Yupu, Wang & Yinan, Rong, 2017. "Design of closed-loop control system for a bidirectional full bridge DC/DC converter," Applied Energy, Elsevier, vol. 194(C), pages 617-625.
    7. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    8. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    9. Aharon, Ilan & Shmilovitz, Doron & Kuperman, Alon, 2017. "Multimode power processing interface for fuel cell range extender in battery powered vehicle," Applied Energy, Elsevier, vol. 204(C), pages 572-581.
    10. Huang, Jiangfan & An, Qing & Zhou, Mingyu & Tang, Ruoli & Dong, Zhengcheng & Lai, Jingang & Li, Xin & Yang, Xiangguo, 2024. "A self-adaptive joint optimization framework for marine hybrid energy storage system design considering load fluctuation characteristics," Applied Energy, Elsevier, vol. 361(C).
    11. Xiaogang Wu & Tianze Wang, 2017. "Optimization of Battery Capacity Decay for Semi-Active Hybrid Energy Storage System Equipped on Electric City Bus," Energies, MDPI, vol. 10(6), pages 1-20, June.
    12. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    13. Dafen Chen & Jiuchun Jiang & Xue Li & Zhanguo Wang & Weige Zhang, 2016. "Modeling of a Pouch Lithium Ion Battery Using a Distributed Parameter Equivalent Circuit for Internal Non-Uniformity Analysis," Energies, MDPI, vol. 9(11), pages 1-18, October.
    14. Beatrice, C. & Capasso, C. & Doulgeris, S. & Samaras, Z. & Veneri, O., 2024. "Hybrid storage system management for hybrid electric vehicles under real operating conditions," Applied Energy, Elsevier, vol. 354(PB).
    15. Saravanan, S. & Ramesh Babu, N., 2017. "Analysis and implementation of high step-up DC-DC converter for PV based grid application," Applied Energy, Elsevier, vol. 190(C), pages 64-72.
    16. Wieczorek, Maciej & Lewandowski, Mirosław, 2017. "A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm," Applied Energy, Elsevier, vol. 192(C), pages 222-233.
    17. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    18. Balsamo, Flavio & Capasso, Clemente & Lauria, Davide & Veneri, Ottorino, 2020. "Optimal design and energy management of hybrid storage systems for marine propulsion applications," Applied Energy, Elsevier, vol. 278(C).
    19. Wu, Yue & Huang, Zhiwu & Liao, Hongtao & Chen, Bin & Zhang, Xiaoyong & Zhou, Yanhui & Liu, Yongjie & Li, Heng & Peng, Jun, 2020. "Adaptive power allocation using artificial potential field with compensator for hybrid energy storage systems in electric vehicles," Applied Energy, Elsevier, vol. 257(C).
    20. Capasso, Clemente & Lauria, Davide & Veneri, Ottorino, 2018. "Experimental evaluation of model-based control strategies of sodium-nickel chloride battery plus supercapacitor hybrid storage systems for urban electric vehicles," Applied Energy, Elsevier, vol. 228(C), pages 2478-2489.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:612-622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.