A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2014.12.021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiong, Rui & Sun, Fengchun & Gong, Xianzhi & Gao, Chenchen, 2014. "A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 1421-1433.
- Nagy, Tibor & Turányi, Tamás, 2012. "Determination of the uncertainty domain of the Arrhenius parameters needed for the investigation of combustion kinetic models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 29-34.
- Dai, Haifeng & Wei, Xuezhe & Sun, Zechang & Wang, Jiayuan & Gu, Weijun, 2012. "Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications," Applied Energy, Elsevier, vol. 95(C), pages 227-237.
- Xiong, Rui & Sun, Fengchun & He, Hongwen & Nguyen, Trong Duy, 2013. "A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles," Energy, Elsevier, vol. 63(C), pages 295-308.
- Liu, Xingtao & Chen, Zonghai & Zhang, Chenbin & Wu, Ji, 2014. "A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation," Applied Energy, Elsevier, vol. 123(C), pages 263-272.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
- Xingtao Liu & Chaoyi Zheng & Ji Wu & Jinhao Meng & Daniel-Ioan Stroe & Jiajia Chen, 2020. "An Improved State of Charge and State of Power Estimation Method Based on Genetic Particle Filter for Lithium-ion Batteries," Energies, MDPI, vol. 13(2), pages 1-16, January.
- Feng, Xuning & Weng, Caihao & Ouyang, Minggao & Sun, Jing, 2016. "Online internal short circuit detection for a large format lithium ion battery," Applied Energy, Elsevier, vol. 161(C), pages 168-180.
- Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
- Xiangyu Cui & Zhu Jing & Maji Luo & Yazhou Guo & Huimin Qiao, 2018. "A New Method for State of Charge Estimation of Lithium-Ion Batteries Using Square Root Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-21, January.
- Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
- Shifei Yuan & Hongjie Wu & Xuerui Ma & Chengliang Yin, 2015. "Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration," Energies, MDPI, vol. 8(8), pages 1-23, July.
- Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
- Hong, Jichao & Wang, Zhenpo & Chen, Wen & Yao, Yongtao, 2019. "Synchronous multi-parameter prediction of battery systems on electric vehicles using long short-term memory networks," Applied Energy, Elsevier, vol. 254(C).
- Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
- Ansari, Amir Babak & Esfahanian, Vahid & Torabi, Farschad, 2016. "Discharge, rest and charge simulation of lead-acid batteries using an efficient reduced order model based on proper orthogonal decomposition," Applied Energy, Elsevier, vol. 173(C), pages 152-167.
- Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
- Xie, Yanping & Zhao, Hongbin & Cheng, Hongwei & Hu, Chenji & Fang, Wenying & Fang, Jianhui & Xu, Jiaqiang & Chen, Zhongwei, 2016. "Facile large-scale synthesis of core–shell structured sulfur@polypyrrole composite and its application in lithium–sulfur batteries with high energy density," Applied Energy, Elsevier, vol. 175(C), pages 522-528.
- Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
- Tang, Xiaopeng & Gao, Furong & Zou, Changfu & Yao, Ke & Hu, Wengui & Wik, Torsten, 2019. "Load-responsive model switching estimation for state of charge of lithium-ion batteries," Applied Energy, Elsevier, vol. 238(C), pages 423-434.
- Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy," Applied Energy, Elsevier, vol. 137(C), pages 427-434.
- Bai, Guangxing & Wang, Pingfeng & Hu, Chao & Pecht, Michael, 2014. "A generic model-free approach for lithium-ion battery health management," Applied Energy, Elsevier, vol. 135(C), pages 247-260.
- Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2017. "On-line battery state-of-charge estimation based on an integrated estimator," Applied Energy, Elsevier, vol. 185(P2), pages 2026-2032.
- Liu, Guangming & Ouyang, Minggao & Lu, Languang & Li, Jianqiu & Hua, Jianfeng, 2015. "A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications," Applied Energy, Elsevier, vol. 149(C), pages 297-314.
- Lee, Seongjun & Kim, Jonghoon, 2015. "Discrete wavelet transform-based denoising technique for advanced state-of-charge estimator of a lithium-ion battery in electric vehicles," Energy, Elsevier, vol. 83(C), pages 462-473.
More about this item
Keywords
Electric vehicles; Lithium-ion polymer battery; Uncertainty; Bias correction; Response surface approximate model; State-of-charge;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1399-1409. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.