IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v063i04.html
   My bibliography  Save this article

RgoogleMaps and loa: Unleashing R Graphics Power on Map Tiles

Author

Listed:
  • Loecher, Markus
  • Ropkins, Karl

Abstract

The RgoogleMaps package provides (1) an R interface to query the Google and the OpenStreetMap servers for static maps in the form of PNGs, and (2) enables the user to overlay plots on those maps within R. The loa package provides dedicated panel functions to integrate RgoogleMaps within the lattice plotting environment. In addition to solving the generic task of plotting on a map background in R, we introduce several specific algorithms to detect and visualize spatio-temporal clusters. This task can often be reduced to detecting over-densities in space relative to a background density. The relative density estimation is framed as a binary classification problem. An integrated hotspot visualizer is presented which allows the efficient identification and visualization of clusters in one environment. Competing clustering methods such as the scan statistic and the density scan offer higher detection power at a much larger computational cost. Such clustering methods can then be extended using the lattice trellis framework to provide further insight into the relationship between clusters and potentially influential parameters. While there are other options for such map ‘mashups’ we believe that the integration of RgoogleMaps and lattice using loa can in certain circumstances be advantageous, e.g., by providing a highly intuitive working environment for multivariate analysis and flexible testbed for the rapid development of novel data visualizations.

Suggested Citation

  • Loecher, Markus & Ropkins, Karl, 2015. "RgoogleMaps and loa: Unleashing R Graphics Power on Map Tiles," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i04).
  • Handle: RePEc:jss:jstsof:v:063:i04
    DOI: http://hdl.handle.net/10.18637/jss.v063.i04
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v063i04/v63i04.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i04/RgoogleMaps_1.2.0.7.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i04/loa_0.2.22.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i04/v63i04.R
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i04/v63i04-replication.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v063.i04?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel B. Neill, 2012. "Fast subset scan for spatial pattern detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(2), pages 337-360, March.
    2. Martin Kulldorff, 2001. "Prospective time periodic geographical disease surveillance using a scan statistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 61-72.
    3. Almquist, Zack W., 2010. "US Census Spatial and Demographic Data in R: The UScensus2000 Suite of Packages," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 37(i06).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Muñoz-Mazón & Laura Fuentes-Moraleda & Angela Chantre-Astaiza & Marlon-Felipe Burbano-Fernandez, 2019. "The Study of Tourist Movements in Tourist Historic Cities: A Comparative Analysis of the Applicability of Four Different Tools," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    2. Maximilian Stallkamp & Brian C Pinkham & Andreas P J Schotter & Olha Buchel, 2018. "Core or periphery? The effects of country-of-origin agglomerations on the within-country expansion of MNEs," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 49(8), pages 942-966, October.
    3. Zamar, David S. & Gopaluni, Bhushan & Sokhansanj, Shahab, 2017. "Optimization of sawmill residues collection for bioenergy production," Applied Energy, Elsevier, vol. 202(C), pages 487-495.
    4. Handley, John C. & Fu, Lina & Tupper, Laura L., 2019. "A case study in spatial-temporal accessibility for a transit system," Journal of Transport Geography, Elsevier, vol. 75(C), pages 25-36.
    5. Avner Bar-Hen & Servane Gey & Jean-Michel Poggi, 2021. "Spatial CART classification trees," Computational Statistics, Springer, vol. 36(4), pages 2591-2613, December.
    6. Arwa S. Sayegh & Richard D. Connors & James E. Tate, 2018. "Uncertainty Propagation from the Cell Transmission Traffic Flow Model to Emission Predictions: A Data-Driven Approach," Service Science, INFORMS, vol. 52(6), pages 1327-1346, December.
    7. Pebesma, Edzer & Bivand, Roger & Ribeiro, Paulo Justiniano, 2015. "Software for Spatial Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i01).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ruoyu & Shu, Lianjie & Su, Yan, 2015. "An adaptive minimum spanning tree test for detecting irregularly-shaped spatial clusters," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 134-146.
    2. Sevvandi Kandanaarachchi & Rob J Hyndman & Kate Smith-Miles, 2020. "Early classification of spatio-temporal events using partial information," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-39, August.
    3. de Lima, Max Sousa & Duczmal, Luiz Henrique, 2014. "Adaptive likelihood ratio approaches for the detection of space–time disease clusters," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 352-370.
    4. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
    5. Dong Ding & Axel Gandy & Georg Hahn, 2020. "A simple method for implementing Monte Carlo tests," Computational Statistics, Springer, vol. 35(3), pages 1373-1392, September.
    6. Sami Ullah & Hanita Daud & Sarat C. Dass & Hadi Fanaee-T & Husnul Kausarian & Alamgir, 2020. "Space-Time Clustering Characteristics of Tuberculosis in Khyber Pakhtunkhwa Province, Pakistan, 2015–2019," IJERPH, MDPI, vol. 17(4), pages 1-10, February.
    7. Pei‐Sheng Lin & Yi‐Hung Kung & Murray Clayton, 2016. "Spatial scan statistics for detection of multiple clusters with arbitrary shapes," Biometrics, The International Biometric Society, vol. 72(4), pages 1226-1234, December.
    8. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    9. Ali Abolhassani & Marcos O. Prates & Safieh Mahmoodi, 2023. "Irregular Shaped Small Nodule Detection Using a Robust Scan Statistic," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 141-162, April.
    10. Yingqi Zhao & Donglin Zeng & Amy H. Herring & Amy Ising & Anna Waller & David Richardson & Michael R. Kosorok, 2011. "Detecting Disease Outbreaks Using Local Spatiotemporal Methods," Biometrics, The International Biometric Society, vol. 67(4), pages 1508-1517, December.
    11. Ruth Benson & Jan Rigby & Christopher Brunsdon & Grace Cully & Lay San Too & Ella Arensman, 2022. "Quantitative Methods to Detect Suicide and Self-Harm Clusters: A Systematic Review," IJERPH, MDPI, vol. 19(9), pages 1-13, April.
    12. Hadeel AlQadi & Majid Bani-Yaghoub & Sindhu Balakumar & Siqi Wu & Alex Francisco, 2021. "Assessment of Retrospective COVID-19 Spatial Clusters with Respect to Demographic Factors: Case Study of Kansas City, Missouri, United States," IJERPH, MDPI, vol. 18(21), pages 1-15, November.
    13. Alexandre Rodrigues & Peter J. Diggle, 2012. "Bayesian Estimation and Prediction for Inhomogeneous Spatiotemporal Log-Gaussian Cox Processes Using Low-Rank Models, With Application to Criminal Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 93-101, March.
    14. Karin Kitchens, 2021. "Dividing Lines: The Role School District Boundaries Play in Spending Inequality for Public Education," Social Science Quarterly, Southwestern Social Science Association, vol. 102(1), pages 468-491, January.
    15. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    16. Kavroudakis, Dimitris, 2015. "sms: An R Package for the Construction of Microdata for Geographical Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i02).
    17. Neill, Daniel B., 2009. "Expectation-based scan statistics for monitoring spatial time series data," International Journal of Forecasting, Elsevier, vol. 25(3), pages 498-517, July.
    18. Miao, Congcong & Chen, Xiang & Zhang, Chuanrong, 2024. "Assessing network-based traffic crash risk using prospective space-time scan statistic method," Journal of Transport Geography, Elsevier, vol. 119(C).
    19. Frisén, Marianne, 2008. "Introduction to financial surveillance," Research Reports 2008:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    20. Zhang, Rongmao & Chan, Ngai Hang & Chi, Changxiong, 2023. "Nonparametric testing for the specification of spatial trend functions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:063:i04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.