IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i2p86-d63082.html
   My bibliography  Save this article

Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges

Author

Listed:
  • Angel Alejandro Juan

    (Computer Science Department, Internet Interdisciplinary Institute, Open University of Catalonia, 08018 Barcelona, Spain)

  • Carlos Alberto Mendez

    (Instituto de Desarrollo Tecnológico para la Industria Química, Universidad Nacional del Litoral, CONICET, 3000 Santa Fe, Argentina)

  • Javier Faulin

    (Statistics and Operations Research Department, Public University of Navarre, 31006 Pamplona, Spain)

  • Jesica De Armas

    (Computer Science Department, Internet Interdisciplinary Institute, Open University of Catalonia, 08018 Barcelona, Spain)

  • Scott Erwin Grasman

    (Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA)

Abstract

Current logistics and transportation (L&T) systems include heterogeneous fleets consisting of common internal combustion engine vehicles as well as other types of vehicles using “green” technologies, e.g., plug-in hybrid electric vehicles and electric vehicles (EVs). However, the incorporation of EVs in L&T activities also raise some additional challenges from the strategic, planning, and operational perspectives. For instance, smart cities are required to provide recharge stations for electric-based vehicles, meaning that investment decisions need to be made about the number, location, and capacity of these stations. Similarly, the limited driving-range capabilities of EVs, which are restricted by the amount of electricity stored in their batteries, impose non-trivial additional constraints when designing efficient distribution routes. Accordingly, this paper identifies and reviews several open research challenges related to the introduction of EVs in L&T activities, including: (a) environmental-related issues; and (b) strategic, planning and operational issues associated with “standard” EVs and with hydrogen-based EVs. The paper also analyzes how the introduction of EVs in L&T systems generates new variants of the well-known Vehicle Routing Problem, one of the most studied optimization problems in the L&T field, and proposes the use of metaheuristics and simheuristics as the most efficient way to deal with these complex optimization problems.

Suggested Citation

  • Angel Alejandro Juan & Carlos Alberto Mendez & Javier Faulin & Jesica De Armas & Scott Erwin Grasman, 2016. "Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges," Energies, MDPI, vol. 9(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:86-:d:63082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/2/86/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/2/86/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    2. Coelho, Leandro Callegari & De Maio, Annarita & Laganà, Demetrio, 2020. "A variable MIP neighborhood descent for the multi-attribute inventory routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    3. Thomas R. Visser & Remy Spliet, 2020. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(4), pages 1091-1112, July.
    4. John E. Fontecha & Oscar O. Guaje & Daniel Duque & Raha Akhavan-Tabatabaei & Juan P. Rodríguez & Andrés L. Medaglia, 2020. "Combined maintenance and routing optimization for large-scale sewage cleaning," Annals of Operations Research, Springer, vol. 286(1), pages 441-474, March.
    5. Luka Matijević & Marko Đurasević & Domagoj Jakobović, 2023. "A Variable Neighborhood Search Method with a Tabu List and Local Search for Optimizing Routing in Trucks in Maritime Ports," Mathematics, MDPI, vol. 11(17), pages 1-22, August.
    6. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    7. Lorenzo Ros-McDonnell & Norina Szander & María Victoria de-la-Fuente-Aragón & Robert Vodopivec, 2019. "Scheduling Sustainable Homecare with Urban Transport and Different Skilled Nurses Using an Approximate Algorithm," Sustainability, MDPI, vol. 11(22), pages 1-14, November.
    8. Kramer, Raphael & Subramanian, Anand & Vidal, Thibaut & Cabral, Lucídio dos Anjos F., 2015. "A matheuristic approach for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 243(2), pages 523-539.
    9. Daniel Schubert & André Scholz & Gerhard Wäscher, 2017. "Integrated Order Picking and Vehicle Routing with Due Dates," FEMM Working Papers 170007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    10. Daniel Schubert & André Scholz & Gerhard Wäscher, 2018. "Integrated order picking and vehicle routing with due dates," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1109-1139, October.
    11. Soriano, Adria & Vidal, Thibaut & Gansterer, Margaretha & Doerner, Karl, 2020. "The vehicle routing problem with arrival time diversification on a multigraph," European Journal of Operational Research, Elsevier, vol. 286(2), pages 564-575.
    12. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    13. Visser, T.R. & Spliet, R., 2017. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Econometric Institute Research Papers EI2017-23, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Palhazi Cuervo, Daniel & Kessels, Roselinde & Goos, Peter & Sörensen, Kenneth, 2016. "An integrated algorithm for the optimal design of stated choice experiments with partial profiles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 648-669.
    15. Yibo Dang & Manjeet Singh & Theodore T. Allen, 2021. "Network Mode Optimization for the DHL Supply Chain," Interfaces, INFORMS, vol. 51(3), pages 179-199, May.
    16. Sungwon Lee & Taesung Hwang, 2018. "Estimating Emissions from Regional Freight Delivery under Different Urban Development Scenarios," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    17. Thibaut Vidal & Rafael Martinelli & Tuan Anh Pham & Minh Hoàng Hà, 2021. "Arc Routing with Time-Dependent Travel Times and Paths," Transportation Science, INFORMS, vol. 55(3), pages 706-724, May.
    18. Bettinelli, Andrea & Cacchiani, Valentina & Crainic, Teodor Gabriel & Vigo, Daniele, 2019. "A Branch-and-Cut-and-Price algorithm for the Multi-trip Separate Pickup and Delivery Problem with Time Windows at Customers and Facilities," European Journal of Operational Research, Elsevier, vol. 279(3), pages 824-839.
    19. Renatha Capua & Yuri Frota & Luiz Satoru Ochi & Thibaut Vidal, 2018. "A study on exponential-size neighborhoods for the bin packing problem with conflicts," Journal of Heuristics, Springer, vol. 24(4), pages 667-695, August.
    20. Zhou, Lin & Zhen, Lu & Baldacci, Roberto & Boschetti, Marco & Dai, Ying & Lim, Andrew, 2021. "A Heuristic Algorithm for solving a large-scale real-world territory design problem," Omega, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:86-:d:63082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.