IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7514-d843415.html
   My bibliography  Save this article

Sustainable Air-Conditioning Systems Enabled by Artificial Intelligence: Research Status, Enterprise Patent Analysis, and Future Prospects

Author

Listed:
  • Dasheng Lee

    (Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Liyuan Chen

    (Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

Abstract

Artificial intelligence (AI) technologies have developed rapidly since 2000. Numerous academic papers have been published regarding energy efficiency improvements for air-conditioning systems. This study reviewed 12 review papers and selected 85 specific cases of applications of AI for HVAC energy usage reduction. In addition to academic studies, 31,221 patents related to HVAC energy-saving equipment filed by 11 companies were investigated. In order to analyze the large amount of data, this study developed a resource description framework (RDF) as an analysis tool. This tool was used with a natural language processing (NLP) program to compare the contents of academic papers and patents. With the automated analysis program, this study aimed to link academic research and corporate research and development, mainly the enterprise patent applications, to analyze the reasons why AI can effectively save energy. This represents a complete analysis of the current status of academic and industrial development. Six methods were identified to save energy effectively, including model-based predictive control (MPC), thermal comfort control, model-free predictive control, control optimization, multi-agent control (MAC), and knowledge-based system/rule set (KBS/RS)-based control. The energy savings of these methods were quantified to be 8.8–25.5%. These methods are widely covered by the examined corporate patent applications. After using NLP to retrieve patent keywords, the landscapes of enterprise patents were constructed and the future research directions were identified. It is concluded that 10 topics, including novel neural network designs, smartphone-assisted machine learning, and transfer learning, can be used to increase the energy-saving effects of AI and enable sustainable air-conditioning systems.

Suggested Citation

  • Dasheng Lee & Liyuan Chen, 2022. "Sustainable Air-Conditioning Systems Enabled by Artificial Intelligence: Research Status, Enterprise Patent Analysis, and Future Prospects," Sustainability, MDPI, vol. 14(12), pages 1-82, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7514-:d:843415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    2. Nam, KiJeon & Heo, SungKu & Li, Qian & Loy-Benitez, Jorge & Kim, MinJeong & Park, DuckShin & Yoo, ChangKyoo, 2020. "A proactive energy-efficient optimal ventilation system using artificial intelligent techniques under outdoor air quality conditions," Applied Energy, Elsevier, vol. 266(C).
    3. Lin, Haiyang & Wang, Qinxing & Wang, Yu & Liu, Yiling & Sun, Qie & Wennersten, Ronald, 2017. "The energy-saving potential of an office under different pricing mechanisms – Application of an agent-based model," Applied Energy, Elsevier, vol. 202(C), pages 248-258.
    4. Dasheng Lee & Fu-Po Tsai, 2020. "Air Conditioning Energy Saving from Cloud-Based Artificial Intelligence: Case Study of a Split-Type Air Conditioner," Energies, MDPI, vol. 13(8), pages 1-25, April.
    5. Du, Yan & Zandi, Helia & Kotevska, Olivera & Kurte, Kuldeep & Munk, Jeffery & Amasyali, Kadir & Mckee, Evan & Li, Fangxing, 2021. "Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning," Applied Energy, Elsevier, vol. 281(C).
    6. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    7. Dey, Maitreyee & Rana, Soumya Prakash & Dudley, Sandra, 2021. "Automated terminal unit performance analysis employing x-RBF neural network and associated energy optimisation – A case study based approach," Applied Energy, Elsevier, vol. 298(C).
    8. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    2. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    3. Jiang, Lai & Yao, Runming & Liu, Kecheng & McCrindle, Rachel, 2017. "An Epistemic-Deontic-Axiologic (EDA) agent-based energy management system in office buildings," Applied Energy, Elsevier, vol. 205(C), pages 440-452.
    4. Wang, Zhu & Wang, Lingfeng & Dounis, Anastasios I. & Yang, Rui, 2012. "Multi-agent control system with information fusion based comfort model for smart buildings," Applied Energy, Elsevier, vol. 99(C), pages 247-254.
    5. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    6. Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
    7. Yang, Shiyu & Wan, Man Pun, 2022. "Machine-learning-based model predictive control with instantaneous linearization – A case study on an air-conditioning and mechanical ventilation system," Applied Energy, Elsevier, vol. 306(PB).
    8. Marinakis, Vangelis & Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2013. "An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector," Applied Energy, Elsevier, vol. 101(C), pages 6-14.
    9. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    10. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    11. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2017. "Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands," Applied Energy, Elsevier, vol. 190(C), pages 222-231.
    12. Israr Ullah & DoHyeun Kim, 2017. "An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes," Energies, MDPI, vol. 10(11), pages 1-21, November.
    13. Buonomano, Annamaria & Montanaro, Umberto & Palombo, Adolfo & Santini, Stefania, 2016. "Dynamic building energy performance analysis: A new adaptive control strategy for stringent thermohygrometric indoor air requirements," Applied Energy, Elsevier, vol. 163(C), pages 361-386.
    14. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2021. "Model predictive control for integrated control of air-conditioning and mechanical ventilation, lighting and shading systems," Applied Energy, Elsevier, vol. 297(C).
    15. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    16. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    17. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2020. "Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization," Applied Energy, Elsevier, vol. 271(C).
    18. Iddio, E. & Wang, L. & Thomas, Y. & McMorrow, G. & Denzer, A., 2020. "Energy efficient operation and modeling for greenhouses: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    19. Aste, Niccolò & Manfren, Massimiliano & Marenzi, Giorgia, 2017. "Building Automation and Control Systems and performance optimization: A framework for analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 313-330.
    20. Nägele, Florian & Kasper, Thomas & Girod, Bastien, 2017. "Turning up the heat on obsolete thermostats: A simulation-based comparison of intelligent control approaches for residential heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1254-1268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7514-:d:843415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.