Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.04.041
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Dan & Wang, Jianping & Wang, Yanan & Li, Wei & Wang, Xuechen & Shi, Haifeng & Zhang, Xingxiang, 2016. "Effect of N-isopropylacrylamide on the preparation and properties of microencapsulated phase change materials," Energy, Elsevier, vol. 106(C), pages 221-230.
- Li, Min & Chen, Meirong & Wu, Zhishen, 2014. "Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube," Applied Energy, Elsevier, vol. 127(C), pages 166-171.
- Wang, Tingyu & Wang, Shuangfeng & Luo, Ruilian & Zhu, Chunyu & Akiyama, Tomohiro & Zhang, Zhengguo, 2016. "Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage," Applied Energy, Elsevier, vol. 171(C), pages 113-119.
- Lashgari, Somayeh & Arabi, Hassan & Mahdavian, Ali Reza & Ambrogi, Veronica, 2017. "Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell," Applied Energy, Elsevier, vol. 190(C), pages 612-622.
- Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
- Hawlader, M. N. A. & Uddin, M. S. & Khin, Mya Mya, 2003. "Microencapsulated PCM thermal-energy storage system," Applied Energy, Elsevier, vol. 74(1-2), pages 195-202, January.
- Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Jianhao Gu & Jiajie Du & Yuxin Li & Jinpei Li & Longfei Chen & Yan Chai & Yongli Li, 2023. "Preparation and Characterization of n-Octadecane@SiO 2 /GO and n-Octadecane@SiO 2 /Ag Nanoencapsulated Phase Change Material for Immersion Cooling of Li-Ion Battery," Energies, MDPI, vol. 16(3), pages 1-16, February.
- Zhao, Yafei & Kong, Weixiao & Jin, Zunlong & Fu, Ye & Wang, Wencai & Zhang, Yatao & Liu, Jindun & Zhang, Bing, 2018. "Storing solar energy within Ag-Paraffin@Halloysite microspheres as a novel self-heating catalyst," Applied Energy, Elsevier, vol. 222(C), pages 180-188.
- He, Lijuan & Mo, Songping & Lin, Pengcheng & Jia, Lisi & Chen, Ying & Cheng, Zhengdong, 2020. "D-mannitol@silica/graphene oxide nanoencapsulated phase change material with high phase change properties and thermal reliability," Applied Energy, Elsevier, vol. 268(C).
- Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
- Zhang, Yi & Tao, Wen & Wang, Kehan & Li, Dongxu, 2020. "Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica," Renewable Energy, Elsevier, vol. 149(C), pages 400-408.
- Liang, Yuntao & Wang, Ting & He, Zhenglong & Sun, Yong & Song, Shuanglin & Cui, Xinfeng & Cao, Yingjiazi, 2023. "High thermal storage capacity phase change microcapsules for heat transfer enhancement through hydroxylated-silanized nano-silicon carbide," Energy, Elsevier, vol. 285(C).
- Li, Min & Mu, Boyuan, 2019. "Effect of different dimensional carbon materials on the properties and application of phase change materials: A review," Applied Energy, Elsevier, vol. 242(C), pages 695-715.
- Pu, Liang & Xu, Lingling & Zhang, Shengqi & Li, Yanzhong, 2019. "Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure," Applied Energy, Elsevier, vol. 240(C), pages 860-869.
- Cheng, Jiaji & Kang, Moyun & Liu, Yuqi & Niu, Shaoshuai & Guan, Yu & Qu, Wenjuan & Li, Shaoxiang, 2022. "The preparation and characterization of thermal expansion capric acid microcapsules for controlling temperature," Energy, Elsevier, vol. 261(PB).
- Lin, Yaxue & Zhu, Chuqiao & Alva, Guruprasad & Fang, Guiyin, 2018. "Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage," Applied Energy, Elsevier, vol. 231(C), pages 494-501.
- Wang, Tingyu & Jiang, Yan & Huang, Jin & Wang, Shuangfeng, 2018. "High thermal conductive paraffin/calcium carbonate phase change microcapsules based composites with different carbon network," Applied Energy, Elsevier, vol. 218(C), pages 184-191.
- Su, Weiguang & Hu, Meiyong & Wang, Li & Kokogiannakis, Georgios & Chen, Jun & Gao, Liying & Li, Anqing & Xu, Chonghai, 2022. "Microencapsulated phase change materials with graphene-based materials: Fabrication, characterisation and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
- Wang, Tingyu & Wang, Shuangfeng & Geng, Lixia & Fang, Yutang, 2016. "Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network," Applied Energy, Elsevier, vol. 179(C), pages 601-608.
- Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
- Cao, Rui-rui & Li, Xuan & Chen, Sai & Yuan, Hao-ran & Zhang, Xing-xiang, 2017. "Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites," Energy, Elsevier, vol. 138(C), pages 157-166.
- Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
- Gupta, Rajan & Shinde, Shraddha & Yella, Aswani & Subramaniam, C. & Saha, Sandip K., 2020. "Thermomechanical characterisations of PTFE, PEEK, PEKK as encapsulation materials for medium temperature solar applications," Energy, Elsevier, vol. 194(C).
- Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
- Ikutegbe, Charles A. & Al-Shannaq, Refat & Farid, Mohammed M., 2022. "Microencapsulation of low melting phase change materials for cold storage applications," Applied Energy, Elsevier, vol. 321(C).
- Rahimi, M. & Ardahaie, S. Saedi & Hosseini, M.J. & Gorzin, M., 2020. "Energy and exergy analysis of an experimentally examined latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 1845-1860.
- Yu, Qinghua & Tchuenbou-Magaia, Fideline & Al-Duri, Bushra & Zhang, Zhibing & Ding, Yulong & Li, Yongliang, 2018. "Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage," Applied Energy, Elsevier, vol. 211(C), pages 1190-1202.
- Gondora, Wayne & Doudin, Khalid & Nowakowski, Daniel J. & Xiao, Bo & Ding, Yulong & Bridgwater, Tony & Yuan, Qingchun, 2016. "Encapsulation of phase change materials using rice-husk-char," Applied Energy, Elsevier, vol. 182(C), pages 274-281.
- Geng, Xiaoye & Li, Wei & Wang, Yu & Lu, Jiangwei & Wang, Jianping & Wang, Ning & Li, Jianjie & Zhang, Xingxiang, 2018. "Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing," Applied Energy, Elsevier, vol. 217(C), pages 281-294.
- Li, Ang & Wang, Jingjing & Dong, Cheng & Dong, Wenjun & Atinafu, Dimberu G. & Chen, Xiao & Gao, Hongyi & Wang, Ge, 2018. "Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity," Applied Energy, Elsevier, vol. 217(C), pages 369-376.
- Chen, J. & Zhang, P., 2017. "Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media," Applied Energy, Elsevier, vol. 190(C), pages 868-879.
- Lin, Yaxue & Zhu, Chuqiao & Alva, Guruprasad & Fang, Guiyin, 2018. "Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage," Applied Energy, Elsevier, vol. 231(C), pages 494-501.
- Alam, Tanvir E. & Dhau, Jaspreet S. & Goswami, D. Yogi & Stefanakos, Elias, 2015. "Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems," Applied Energy, Elsevier, vol. 154(C), pages 92-101.
- Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
- He, Lijuan & Mo, Songping & Lin, Pengcheng & Jia, Lisi & Chen, Ying & Cheng, Zhengdong, 2020. "D-mannitol@silica/graphene oxide nanoencapsulated phase change material with high phase change properties and thermal reliability," Applied Energy, Elsevier, vol. 268(C).
- Huanmei Yuan & Sitong Liu & Tonghe Li & Liyun Yang & Dehong Li & Hao Bai & Xiaodong Wang, 2024. "Review on Thermal Properties with Influence Factors of Solid–Liquid Organic Phase-Change Micro/Nanocapsules," Energies, MDPI, vol. 17(3), pages 1-51, January.
- Wang, Tingyu & Wang, Shuangfeng & Luo, Ruilian & Zhu, Chunyu & Akiyama, Tomohiro & Zhang, Zhengguo, 2016. "Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage," Applied Energy, Elsevier, vol. 171(C), pages 113-119.
More about this item
Keywords
Microencapsulated phase change materials; Encapsulation capacity; Leakage-prevention; Graphene oxide;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:197:y:2017:i:c:p:354-363. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.