IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v191y2017icp287-310.html
   My bibliography  Save this article

Advanced nanomaterials in oil and gas industry: Design, application and challenges

Author

Listed:
  • Khalil, Munawar
  • Jan, Badrul Mohamed
  • Tong, Chong Wen
  • Berawi, Mohammed Ali

Abstract

The increase of global energy consumption and the growing demand of fossil fuels as predominant energy resources have greatly improved the advancement of new technologies in hydrocarbon recovery processes. New class of materials, such as nanoparticles has been widely studied in an effort to ensure simpler and more economical oil exploration and production processes, especially in challenging and harsh reservoirs environments. The unique physical and chemical properties of nanomaterials have lead to their application in almost all oil and gas aspects, such as exploration, reservoir characterization, drilling, cementing, production and stimulation, enhanced oil recovery (EOR), refining and processing. This review article presents comprehensive discussion on the most recent development of nanomaterials and their roles in new or enhanced applications in oil and gas industry. Here, the synthetic strategies and functionalization of some of the most common nanomaterials used in oil and gas industry, i.e. metallic and metal oxide nanoparticles, carbon nanotubes and magnetic nanoparticles are summarized. Their applications in different types of oil and gas processes are also discussed. Finally, an outlook on the current challenges and some prospects for the future applications is also highlighted.

Suggested Citation

  • Khalil, Munawar & Jan, Badrul Mohamed & Tong, Chong Wen & Berawi, Mohammed Ali, 2017. "Advanced nanomaterials in oil and gas industry: Design, application and challenges," Applied Energy, Elsevier, vol. 191(C), pages 287-310.
  • Handle: RePEc:eee:appene:v:191:y:2017:i:c:p:287-310
    DOI: 10.1016/j.apenergy.2017.01.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    2. Darsh T. Wasan & Alex D. Nikolov, 2003. "Spreading of nanofluids on solids," Nature, Nature, vol. 423(6936), pages 156-159, May.
    3. Serrano, Elena & Rus, Guillermo & García-Martínez, Javier, 2009. "Nanotechnology for sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2373-2384, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Yuanhao & Xiao, Senbo & Ma, Rui & Zhang, Zhiliang & He, Jianying, 2022. "Atomistic insight into oil displacement on rough surface by Janus nanoparticles," Energy, Elsevier, vol. 245(C).
    2. Vu Nguyen & Olatunji Olayiwola & Ning Liu & Boyun Guo, 2022. "Investigation of Nano-Silica Solution Flow through Cement Cracks," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
    3. Anna Pikłowska & Jan Ziaja & Marcin Kremieniewski, 2021. "Influence of the Addition of Silica Nanoparticles on the Compressive Strength of Cement Slurries under Elevated Temperature Condition," Energies, MDPI, vol. 14(17), pages 1-12, September.
    4. Alhaitham M. Alkalbani & Girma T. Chala, 2024. "A Comprehensive Review of Nanotechnology Applications in Oil and Gas Well Drilling Operations," Energies, MDPI, vol. 17(4), pages 1-32, February.
    5. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Ali, Mohamed Kamal Ahmed & Fuming, Peng & Younus, Hussein A. & Abdelkareem, Mohamed A.A. & Essa, F.A. & Elagouz, Ahmed & Xianjun, Hou, 2018. "Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives," Applied Energy, Elsevier, vol. 211(C), pages 461-478.
    7. Monika Gajec & Ewa Kukulska-Zając & Anna Król, 2021. "Optimization of Silver Nanoparticle Separation Method from Drilling Waste Matrices," Energies, MDPI, vol. 14(7), pages 1-17, April.
    8. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    9. Razali, S.Z. & Yunus, R. & Abdul Rashid, Suraya & Lim, H.N. & Mohamed Jan, B., 2018. "Review of biodegradable synthetic-based drilling fluid: Progression, performance and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 171-186.
    10. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    11. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Ma, Xinhua & Zhu, Weiping & Zheng, Tianyu & Wu, Keliu & Zhang, Kun & Ma, Kuiyou, 2020. "Improved methods for determining effective sandstone reservoirs and evaluating hydrocarbon enrichment in petroliferous basins," Applied Energy, Elsevier, vol. 261(C).
    12. Druetta, P. & Raffa, P. & Picchioni, F., 2019. "Chemical enhanced oil recovery and the role of chemical product design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Wang, Sijia & Li, Shaohua & Liu, Donglei & Shi, Menglan & Tong, Baocai & Cheng, Chengzu & Jiang, Lanlan & Song, Yongchen, 2023. "Study of the impact of various porous media on pore space utilization and CO2 storage by injection of microbubbles into oil reservoirs," Applied Energy, Elsevier, vol. 339(C).
    14. Jacek Fal & Omid Mahian & Gaweł Żyła, 2018. "Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review," Energies, MDPI, vol. 11(11), pages 1-46, October.
    15. Chen, Yizhong & Li, Jing & Lu, Hongwei & Yang, Yiyang, 2020. "Impact of unconventional natural gas development on regional water resources and market supply in China from the perspective of game analysis," Energy Policy, Elsevier, vol. 145(C).
    16. Rao, Xiang & Sheng, Chenxing & Guo, Zhiwei & Dai, Leyang & Yuan, Chengqing, 2023. "A novel finding on tribological, emission, and vibration performances of diesel engines linking to graphene-attapulgite lubricants additives under hot engine tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Marcin Kremieniewski, 2022. "Improving the Efficiency of Oil Recovery in Research and Development," Energies, MDPI, vol. 15(12), pages 1-7, June.
    18. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aftab, A. & Ismail, A.R. & Ibupoto, Z.H. & Akeiber, H. & Malghani, M.G.K., 2017. "Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1301-1313.
    2. Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
    3. Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
    4. Zhang, Zhien & Cai, Jianchao & Chen, Feng & Li, Hao & Zhang, Wenxiang & Qi, Wenjie, 2018. "Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status," Renewable Energy, Elsevier, vol. 118(C), pages 527-535.
    5. Devendiran, Dhinesh Kumar & Amirtham, Valan Arasu, 2016. "A review on preparation, characterization, properties and applications of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 21-40.
    6. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
    7. Salman, B.H. & Mohammed, H.A. & Munisamy, K.M. & Kherbeet, A. Sh., 2013. "Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 848-880.
    8. Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
    9. Syahira Mansur & Anuar Ishak & Ioan Pop, 2015. "The Magnetohydrodynamic Stagnation Point Flow of a Nanofluid over a Stretching/Shrinking Sheet with Suction," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    10. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    11. Xiao Wang & Senbo Xiao & Zhiliang Zhang & Jianying He, 2017. "Effect of Nanoparticles on Spontaneous Imbibition of Water into Ultraconfined Reservoir Capillary by Molecular Dynamics Simulation," Energies, MDPI, vol. 10(4), pages 1-14, April.
    12. Amjad Ali & Zainab Bukhari & Gullnaz Shahzadi & Zaheer Abbas & Muhammad Umar, 2021. "Numerical Simulation of the Thermally Developed Pulsatile Flow of a Hybrid Nanofluid in a Constricted Channel," Energies, MDPI, vol. 14(9), pages 1-22, April.
    13. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    14. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    15. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    16. Sharma, A. & Tripathi, D. & Sharma, R.K. & Tiwari, A.K., 2019. "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Madhu Sudan Saha & Vladimir Neburchilov & Dave Ghosh & Jiujun Zhang, 2013. "Nanomaterials‐supported Pt catalysts for proton exchange membrane fuel cells," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 31-51, January.
    18. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    19. Kumar, Sandeep & Nehra, Monika & Deep, Akash & Kedia, Deepak & Dilbaghi, Neeraj & Kim, Ki-Hyun, 2017. "Quantum-sized nanomaterials for solar cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 821-839.
    20. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2016. "Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1584-1601.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:191:y:2017:i:c:p:287-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.