IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v339y2023ics0306261923003112.html
   My bibliography  Save this article

Study of the impact of various porous media on pore space utilization and CO2 storage by injection of microbubbles into oil reservoirs

Author

Listed:
  • Wang, Sijia
  • Li, Shaohua
  • Liu, Donglei
  • Shi, Menglan
  • Tong, Baocai
  • Cheng, Chengzu
  • Jiang, Lanlan
  • Song, Yongchen

Abstract

CO2 capture and storage technology have the potential to help reach net zero emissions. CO2-enhanced oil recovery (CO2 EOR) is a favourable method. Limited pilot testing has provided preliminary evidence that the unique physical properties of gas microbubbles (MBs) can be used to improve pore utilization efficiency. In this study, supercritical CO2 injection at 0.05 mL/min into sand samples with different grain sizes under reservoir conditions was investigated by nuclear magnetic resonance (NMR). The spatial distribution of the CO2 and oil and the dynamic pore occupancy mechanism were determined for the first time, and the results from normal bubbles (NBs) and MBs were compared. The results show a more significant left shift of the transverse relaxation time in the case of MB injection, which means that CO2 can easily occupy a wide range of large pore spaces. Dynamic changes in the oil volume in the four types of pores classified by the transverse relaxation time indicate that the oil in large pores is flushed earlier when MB is injected and that the CO2 saturation in minimal pores (T2 relaxation time range from 5 ms to 100 ms) and small pores (T2 relaxation time range from 100 ms to 500 ms) increases. The cumulative oil volume fraction decreases by 9.0% when injecting MBs. From the perspective of carbon storage, the gas storage potential is significantly enhanced within low-permeability sand when injected with MBs. The maximum volume of free CO2 was enhanced by 16.9% in this case. In addition, the storage efficiency is enhanced up to 5.1% for low-permeability sand and 1.6% for medium-permeability sand. However, bubble flow is not as advantageous in high-permeability sand. Considering dissolution trapping, the storage efficiency reaches 26.3%.

Suggested Citation

  • Wang, Sijia & Li, Shaohua & Liu, Donglei & Shi, Menglan & Tong, Baocai & Cheng, Chengzu & Jiang, Lanlan & Song, Yongchen, 2023. "Study of the impact of various porous media on pore space utilization and CO2 storage by injection of microbubbles into oil reservoirs," Applied Energy, Elsevier, vol. 339(C).
  • Handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003112
    DOI: 10.1016/j.apenergy.2023.120947
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923003112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiang & Wei, Bing & You, Junyu & Liu, Jiang & Wang, Dianlin & Lu, Jun & Tong, Jing, 2021. "Characterizing pore-level oil mobilization processes in unconventional reservoirs assisted by state-of-the-art nuclear magnetic resonance technique," Energy, Elsevier, vol. 236(C).
    2. Druetta, P. & Raffa, P. & Picchioni, F., 2019. "Chemical enhanced oil recovery and the role of chemical product design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Khalil, Munawar & Jan, Badrul Mohamed & Tong, Chong Wen & Berawi, Mohammed Ali, 2017. "Advanced nanomaterials in oil and gas industry: Design, application and challenges," Applied Energy, Elsevier, vol. 191(C), pages 287-310.
    4. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    5. Xia, Wenjie & Shen, Weijun & Yu, Li & Zheng, Chenggang & Yu, Weichu & Tang, Yongchun, 2016. "Conversion of petroleum to methane by the indigenous methanogenic consortia for oil recovery in heavy oil reservoir," Applied Energy, Elsevier, vol. 171(C), pages 646-655.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siavashi, Javad & Mahdaviara, Mehdi & Shojaei, Mohammad Javad & Sharifi, Mohammad & Blunt, Martin J., 2024. "Segmentation of two-phase flow X-ray tomography images to determine contact angle using deep autoencoders," Energy, Elsevier, vol. 288(C).
    2. Li, Shaohua & Wang, Xin & Wang, Sijia & Zhang, Yi & Chen, Cong & Jiang, Lanlan & Wang, Lei & Liang, Fei & Sun, Hongjun & Song, Yongchen, 2024. "Optimizing oil recovery with CO2 microbubbles: A study of gas composition," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shaohua & Wang, Xin & Wang, Sijia & Zhang, Yi & Chen, Cong & Jiang, Lanlan & Wang, Lei & Liang, Fei & Sun, Hongjun & Song, Yongchen, 2024. "Optimizing oil recovery with CO2 microbubbles: A study of gas composition," Energy, Elsevier, vol. 302(C).
    2. Anna Pikłowska & Jan Ziaja & Marcin Kremieniewski, 2021. "Influence of the Addition of Silica Nanoparticles on the Compressive Strength of Cement Slurries under Elevated Temperature Condition," Energies, MDPI, vol. 14(17), pages 1-12, September.
    3. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    4. Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
    5. Chen, Yizhong & Li, Jing & Lu, Hongwei & Yang, Yiyang, 2020. "Impact of unconventional natural gas development on regional water resources and market supply in China from the perspective of game analysis," Energy Policy, Elsevier, vol. 145(C).
    6. Rao, Xiang & Sheng, Chenxing & Guo, Zhiwei & Dai, Leyang & Yuan, Chengqing, 2023. "A novel finding on tribological, emission, and vibration performances of diesel engines linking to graphene-attapulgite lubricants additives under hot engine tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Marcin Kremieniewski, 2022. "Improving the Efficiency of Oil Recovery in Research and Development," Energies, MDPI, vol. 15(12), pages 1-7, June.
    8. Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
    9. Zhou, Xiaofeng & Wei, Jianguang & Zhao, Junfeng & Zhang, Xiangyu & Fu, Xiaofei & Shamil, Sultanov & Abdumalik, Gayubov & Chen, Yinghe & Wang, Jian, 2024. "Study on pore structure and permeability sensitivity of tight oil reservoirs," Energy, Elsevier, vol. 288(C).
    10. Ali, Mohamed Kamal Ahmed & Fuming, Peng & Younus, Hussein A. & Abdelkareem, Mohamed A.A. & Essa, F.A. & Elagouz, Ahmed & Xianjun, Hou, 2018. "Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives," Applied Energy, Elsevier, vol. 211(C), pages 461-478.
    11. Monika Gajec & Ewa Kukulska-Zając & Anna Król, 2021. "Optimization of Silver Nanoparticle Separation Method from Drilling Waste Matrices," Energies, MDPI, vol. 14(7), pages 1-17, April.
    12. Wei, Jianguang & Fu, Lanqing & Zhao, Guozhong & Zhao, Xiaoqing & Liu, Xinrong & Wang, Anlun & Wang, Yan & Cao, Sheng & Jin, Yuhan & Yang, Fengrui & Liu, Tianyang & Yang, Ying, 2023. "Nuclear magnetic resonance study on imbibition and stress sensitivity of lamellar shale oil reservoir," Energy, Elsevier, vol. 282(C).
    13. Razali, S.Z. & Yunus, R. & Abdul Rashid, Suraya & Lim, H.N. & Mohamed Jan, B., 2018. "Review of biodegradable synthetic-based drilling fluid: Progression, performance and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 171-186.
    14. Zhang, Yingnan & Li, Shujun & Dou, Xiangji & Wang, Sen & He, Yanfeng & Feng, Qihong, 2023. "Molecular insights into the natural gas regulating tight oil movability," Energy, Elsevier, vol. 270(C).
    15. Jacek Fal & Omid Mahian & Gaweł Żyła, 2018. "Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review," Energies, MDPI, vol. 11(11), pages 1-46, October.
    16. Wei, Jianguang & Li, Jiangtao & Zhang, Ao & Shang, Demiao & Zhou, Xiaofeng & Niu, Yintao, 2023. "Influence of shale bedding on development of microscale pores and fractures," Energy, Elsevier, vol. 282(C).
    17. Zhang, Huidong & Liu, Yong & Tang, Jiren & Liu, Wenchuan & Chen, Changjiang, 2022. "Investigation on the fluctuation characteristics and its influence on impact force of supercritical carbon dioxide jet," Energy, Elsevier, vol. 253(C).
    18. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Zhou, Xiaofeng & Zhang, Guolu & Wei, Jianguang & Li, Zhuang & Shamil, Sultanov & Jiang, Guochao & Chen, Yinghe & Zhang, Yanyan & Yang, Siqi & Wu, Jie, 2024. "Research on the recovery efficiency of crude oil in tight reservoirs with different pore sizes," Energy, Elsevier, vol. 306(C).
    20. Chang, Yuanhao & Xiao, Senbo & Ma, Rui & Zhang, Zhiliang & He, Jianying, 2022. "Atomistic insight into oil displacement on rough surface by Janus nanoparticles," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.