IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v188y2017icp130-139.html
   My bibliography  Save this article

New equations of wave energy assessment accounting for the water depth

Author

Listed:
  • Liang, Bingchen
  • Shao, Zhuxiao
  • Wu, Guoxiang
  • Shao, Meng
  • Sun, Jinwei

Abstract

The assessment of wave energy resources is critical for site selection before deploying wave energy converters (WECs). Usually, a simplified wave energy assessment equation (SWEAE), using bulk wave parameters such as significant wave heights, peak periods, etc., is employed to estimate the wave energy flux. However, it neglects the effects of water depth on wave group velocities, thus being more suitable for deep waters. Considering most of the WECs are installed in nearshore zones or around islands, a more accurate wave energy assessment equation is needed. In the present work, a general wave energy assessment equation (GWEAE) for both shallow and deep waters is derived by introducing an explicit wave dispersion equation. Both GWEAE and SWEAE are applied in the assessment of wave energy fluxes in the coastal waters surrounding Qingdao City, China. Wave energy fluxes calculated by integration over all frequency and direction bins of the random waves, which can be regarded as the most accurate equation, are used for validating the two equations. It is demonstrated that the GWEAE significantly improve the accuracy of the wave energy estimation for various water depths compared with the SWEAE, especially for nearshore shallow water areas. Because the improved equation is free of integration calculations and iterative computations, it is a simple and accurate tool for estimating wave energy fluxes.

Suggested Citation

  • Liang, Bingchen & Shao, Zhuxiao & Wu, Guoxiang & Shao, Meng & Sun, Jinwei, 2017. "New equations of wave energy assessment accounting for the water depth," Applied Energy, Elsevier, vol. 188(C), pages 130-139.
  • Handle: RePEc:eee:appene:v:188:y:2017:i:c:p:130-139
    DOI: 10.1016/j.apenergy.2016.11.127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916317585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghosh, Soumya & Chakraborty, Tilottama & Saha, Satyabrata & Majumder, Mrinmoy & Pal, Manish, 2016. "Development of the location suitability index for wave energy production by ANN and MCDM techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1017-1028.
    2. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2016. "Sustainability of wave energy resources in southern Caspian Sea," Energy, Elsevier, vol. 97(C), pages 549-559.
    3. Appendini, Christian M. & Urbano-Latorre, Claudia P. & Figueroa, Bernardo & Dagua-Paz, Claudia J. & Torres-Freyermuth, Alec & Salles, Paulo, 2015. "Wave energy potential assessment in the Caribbean Low Level Jet using wave hindcast information," Applied Energy, Elsevier, vol. 137(C), pages 375-384.
    4. Iglesias, G. & Carballo, R., 2011. "Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain)," Energy, Elsevier, vol. 36(9), pages 5525-5531.
    5. Aydoğan, Burak & Ayat, Berna & Yüksel, Yalçın, 2013. "Black Sea wave energy atlas from 13 years hindcasted wave data," Renewable Energy, Elsevier, vol. 57(C), pages 436-447.
    6. Veigas, M. & López, M. & Iglesias, G., 2014. "Assessing the optimal location for a shoreline wave energy converter," Applied Energy, Elsevier, vol. 132(C), pages 404-411.
    7. Henfridsson, Urban & Neimane, Viktoria & Strand, Kerstin & Kapper, Robert & Bernhoff, Hans & Danielsson, Oskar & Leijon, Mats & Sundberg, Jan & Thorburn, Karin & Ericsson, Ellerth & Bergman, Karl, 2007. "Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak," Renewable Energy, Elsevier, vol. 32(12), pages 2069-2084.
    8. Liang, Bingchen & Fan, Fei & Yin, Zegao & Shi, Hongda & Lee, Dongyong, 2013. "Numerical modelling of the nearshore wave energy resources of Shandong peninsula, China," Renewable Energy, Elsevier, vol. 57(C), pages 330-338.
    9. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    10. Reguero, B.G. & Losada, I.J. & Méndez, F.J., 2015. "A global wave power resource and its seasonal, interannual and long-term variability," Applied Energy, Elsevier, vol. 148(C), pages 366-380.
    11. Ayat, Berna, 2013. "Wave power atlas of Eastern Mediterranean and Aegean Seas," Energy, Elsevier, vol. 54(C), pages 251-262.
    12. Arinaga, Randi A. & Cheung, Kwok Fai, 2012. "Atlas of global wave energy from 10 years of reanalysis and hindcast data," Renewable Energy, Elsevier, vol. 39(1), pages 49-64.
    13. Vicinanza, D. & Contestabile, P. & Ferrante, V., 2013. "Wave energy potential in the north-west of Sardinia (Italy)," Renewable Energy, Elsevier, vol. 50(C), pages 506-521.
    14. Carballo, R. & Sánchez, M. & Ramos, V. & Castro, A., 2014. "A tool for combined WEC-site selection throughout a coastal region: Rias Baixas, NW Spain," Applied Energy, Elsevier, vol. 135(C), pages 11-19.
    15. Waters, Rafael & Engström, Jens & Isberg, Jan & Leijon, Mats, 2009. "Wave climate off the Swedish west coast," Renewable Energy, Elsevier, vol. 34(6), pages 1600-1606.
    16. Keskin Citiroglu, H. & Okur, A., 2014. "An approach to wave energy converter applications in Eregli on the western Black Sea coast of Turkey," Applied Energy, Elsevier, vol. 135(C), pages 738-747.
    17. Zheng, Chong Wei & Li, Chong Yin, 2015. "Variation of the wave energy and significant wave height in the China Sea and adjacent waters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 381-387.
    18. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    19. Neill, Simon P. & Lewis, Matt J. & Hashemi, M. Reza & Slater, Emma & Lawrence, John & Spall, Steven A., 2014. "Inter-annual and inter-seasonal variability of the Orkney wave power resource," Applied Energy, Elsevier, vol. 132(C), pages 339-348.
    20. Kamranzad, Bahareh & Chegini, Vahid & Etemad-Shahidi, Amir, 2016. "Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves," Renewable Energy, Elsevier, vol. 94(C), pages 341-352.
    21. Wang, Zhifeng & Dong, Sheng & Li, Xue & Guedes Soares, C., 2016. "Assessments of wave energy in the Bohai Sea, China," Renewable Energy, Elsevier, vol. 90(C), pages 145-156.
    22. Ponce de León, S. & Orfila, A. & Simarro, G., 2016. "Wave energy in the Balearic Sea. Evolution from a 29 year spectral wave hindcast," Renewable Energy, Elsevier, vol. 85(C), pages 1192-1200.
    23. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    24. Yaakob, Omar & Hashim, Farah Ellyza & Mohd Omar, Kamaludin & Md Din, Ami Hassan & Koh, Kho King, 2016. "Satellite-based wave data and wave energy resource assessment for South China Sea," Renewable Energy, Elsevier, vol. 88(C), pages 359-371.
    25. Pinson, P. & Reikard, G. & Bidlot, J.-R., 2012. "Probabilistic forecasting of the wave energy flux," Applied Energy, Elsevier, vol. 93(C), pages 364-370.
    26. Mediavilla, D.G. & Sepúlveda, H.H., 2016. "Nearshore assessment of wave energy resources in central Chile (2009–2010)," Renewable Energy, Elsevier, vol. 90(C), pages 136-144.
    27. Iglesias, G. & Carballo, R., 2010. "Wave energy and nearshore hot spots: The case of the SE Bay of Biscay," Renewable Energy, Elsevier, vol. 35(11), pages 2490-2500.
    28. Langodan, Sabique & Viswanadhapalli, Yesubabu & Dasari, Hari Prasad & Knio, Omar & Hoteit, Ibrahim, 2016. "A high-resolution assessment of wind and wave energy potentials in the Red Sea," Applied Energy, Elsevier, vol. 181(C), pages 244-255.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoodi, Kumars & Ghassemi, Hassan & Razminia, Abolhassan, 2019. "Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset," Energy, Elsevier, vol. 187(C).
    2. Duan, Derong & Lin, Xiangyang & Wang, Muhao & Liu, Xia & Gao, Changqing & Zhang, Hui & Yang, Xuefeng, 2024. "Study on energy conversion efficiency of wave generation in shake plate mode," Energy, Elsevier, vol. 290(C).
    3. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    4. Meng Shao & Shulei Zhang & Jinwei Sun & Zhixin Han & Zhuxiao Shao & Chuanxiu Yi, 2022. "GIS-MCDM-Based Approach to Site Selection of Wave Power Plants for Islands in China," Energies, MDPI, vol. 15(11), pages 1-24, June.
    5. Hong, Ji-Seok & Moon, Jae-Hong & Kim, Taekyun & Cho, Il-Hyoung & Choi, Jongsu & Park, Ji Yong, 2021. "Response of wave energy to tidal currents in the western sea of Jeju Island, Korea," Renewable Energy, Elsevier, vol. 172(C), pages 564-573.
    6. Sun, Ze & Zhang, Haicheng & Liu, Xiaolong & Ding, Jun & Xu, Daolin & Cai, Zhiwen, 2021. "Wave energy assessment of the Xisha Group Islands zone for the period 2010–2019," Energy, Elsevier, vol. 220(C).
    7. Zheng, C.W. & Li, C.Y., 2017. "Propagation characteristic and intraseasonal oscillation of the swell energy of the Indian Ocean," Applied Energy, Elsevier, vol. 197(C), pages 342-353.
    8. Su, Wen-Ray & Chen, Hongey & Chen, Wei-Bo & Chang, Chih-Hsin & Lin, Lee-Yaw & Jang, Jiun-Huei & Yu, Yi-Chiang, 2018. "Numerical investigation of wave energy resources and hotspots in the surrounding waters of Taiwan," Renewable Energy, Elsevier, vol. 118(C), pages 814-824.
    9. Xiao, Han & Liu, Zhenwei & Zhang, Ran & Kelham, Andrew & Xu, Xiangyang & Wang, Xu, 2021. "Study of a novel rotational speed amplified dual turbine wheel wave energy converter," Applied Energy, Elsevier, vol. 301(C).
    10. Sun, Peidong & Wang, Jichao, 2024. "Long-term variability analysis of wave energy resources and its impact on wave energy converters along the Chinese coastline," Energy, Elsevier, vol. 288(C).
    11. Zhang, Na & Li, Shuai & Wu, Yongsheng & Wang, Keh-Han & Zhang, Qinghe & You, Zai-Jin & Wang, Jin, 2020. "Effects of sea ice on wave energy flux distribution in the Bohai Sea," Renewable Energy, Elsevier, vol. 162(C), pages 2330-2343.
    12. Sun, Peidong & Xu, Bin & Wang, Jichao, 2022. "Long-term trend analysis and wave energy assessment based on ERA5 wave reanalysis along the Chinese coastline," Applied Energy, Elsevier, vol. 324(C).
    13. Chen, Wei-Bo, 2024. "Analysing seven decades of global wave power trends: The impact of prolonged ocean warming," Applied Energy, Elsevier, vol. 356(C).
    14. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    15. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    16. Zou, Shangyan & Abdelkhalik, Ossama, 2020. "Time-varying linear quadratic Gaussian optimal control for three-degree-of-freedom wave energy converters," Renewable Energy, Elsevier, vol. 149(C), pages 217-225.
    17. Anastas, Gael & Alfredo Santos, João & Fortes, C.J.E.M. & Pinheiro, Liliana V., 2022. "Energy assessment of potential locations for OWC instalation at the Portuguese coast," Renewable Energy, Elsevier, vol. 200(C), pages 37-47.
    18. Shao, Zhuxiao & Gao, Huijun & Liang, Bingchen & Lee, Dongyoung, 2022. "Potential, trend and economic assessments of global wave power," Renewable Energy, Elsevier, vol. 195(C), pages 1087-1102.
    19. Laura Castro-Santos & Ana Rute Bento & Carlos Guedes Soares, 2020. "The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain," Energies, MDPI, vol. 13(4), pages 1-19, February.
    20. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
    21. Andrea Farkas & Nastia Degiuli & Ivana Martić, 2019. "Assessment of Offshore Wave Energy Potential in the Croatian Part of the Adriatic Sea and Comparison with Wind Energy Potential," Energies, MDPI, vol. 12(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    2. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    3. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2017. "Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf," Renewable Energy, Elsevier, vol. 114(PA), pages 59-71.
    4. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.
    5. Sun, Peidong & Xu, Bin & Wang, Jichao, 2022. "Long-term trend analysis and wave energy assessment based on ERA5 wave reanalysis along the Chinese coastline," Applied Energy, Elsevier, vol. 324(C).
    6. Liang, Bingchen & Shao, Zhuxiao & Wu, Yajie & Shi, Hongda & Liu, Zhen, 2017. "Numerical study to estimate the wave energy under Wave-Current Interaction in the Qingdao coast, China," Renewable Energy, Elsevier, vol. 101(C), pages 845-855.
    7. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2018. "A 33-year hindcast on wave energy assessment in the western French coast," Energy, Elsevier, vol. 165(PB), pages 790-801.
    8. Bingölbali, Bilal & Majidi, Ajab Gul & Akpınar, Adem, 2021. "Inter- and intra-annual wave energy resource assessment in the south-western Black Sea coast," Renewable Energy, Elsevier, vol. 169(C), pages 809-819.
    9. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
    10. Jahangir, Mohammad Hossein & Mazinani, Mehran, 2020. "Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea," Renewable Energy, Elsevier, vol. 152(C), pages 331-346.
    11. Wan, Yong & Zheng, Chongwei & Li, Ligang & Dai, Yongshou & Esteban, M. Dolores & López-Gutiérrez, José-Santos & Qu, Xiaojun & Zhang, Xiaoyu, 2020. "Wave energy assessment related to wave energy convertors in the coastal waters of China," Energy, Elsevier, vol. 202(C).
    12. Kamranzad, Bahareh & Hadadpour, Sanaz, 2020. "A multi-criteria approach for selection of wave energy converter/location," Energy, Elsevier, vol. 204(C).
    13. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    14. Appendini, Christian M. & Urbano-Latorre, Claudia P. & Figueroa, Bernardo & Dagua-Paz, Claudia J. & Torres-Freyermuth, Alec & Salles, Paulo, 2015. "Wave energy potential assessment in the Caribbean Low Level Jet using wave hindcast information," Applied Energy, Elsevier, vol. 137(C), pages 375-384.
    15. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    16. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    17. Zheng, C.W. & Li, C.Y., 2017. "Propagation characteristic and intraseasonal oscillation of the swell energy of the Indian Ocean," Applied Energy, Elsevier, vol. 197(C), pages 342-353.
    18. Zanous, Sina Pasha & Shafaghat, Rouzbeh & Alamian, Rezvan & Shadloo, Mostafa Safdari & Khosravi, Mohammad, 2019. "Feasibility study of wave energy harvesting along the southern coast and islands of Iran," Renewable Energy, Elsevier, vol. 135(C), pages 502-514.
    19. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
    20. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:188:y:2017:i:c:p:130-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.