IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v88y2016icp359-371.html
   My bibliography  Save this article

Satellite-based wave data and wave energy resource assessment for South China Sea

Author

Listed:
  • Yaakob, Omar
  • Hashim, Farah Ellyza
  • Mohd Omar, Kamaludin
  • Md Din, Ami Hassan
  • Koh, Kho King

Abstract

Wave energy has the potential to valuably contribute to the coastal states renewable energy mix. However, lack of data sources hinders the effort to deliberately assess this resource. This paper presents an assessment of wave energy resources in the South China Sea (Malaysian Exclusive Economic Zone) using satellite altimeter. Radar Altimeter Database System (RADS) provides data of significant wave height and wind speed from several satellite altimeters. The data were extracted for a space resolution of 0.25° × 0.25°, and within the time range from January 2001 to December 2010 and space range of 1.5°N – 10.0°N, 95.0°E − 116.0°E. For this study, fifteen 2° × 2° zones were considered around the east coast of Peninsular Malaysia and the coast of East Malaysia. The 10-year-data were validated with buoy measurements and presented as the probability distribution of wave height and wave period. The results indicate that bulk of the waves had peak period between 5s and 7s and significant wave height between 0.5 m and 1.5 m. The data were then used to calculate the theoretical available wave energy and power in the study areas. The results show that the average wave energy density of Malaysian seas facing the South China Sea is in the range of 1.41 kW/m to 7.92 kW/m, while the energy storage varies from 7.10 MW h/m to 69.41 MW h/m. This study also demonstrates the ability of satellite altimeter to provide an accurate and reliable data for more comprehensive and realistic estimate of the energy potential. The ability of satellite altimeter to provide wave data for all sea zones will enable more accurate identification of potential locations for wave energy development in Malaysia.

Suggested Citation

  • Yaakob, Omar & Hashim, Farah Ellyza & Mohd Omar, Kamaludin & Md Din, Ami Hassan & Koh, Kho King, 2016. "Satellite-based wave data and wave energy resource assessment for South China Sea," Renewable Energy, Elsevier, vol. 88(C), pages 359-371.
  • Handle: RePEc:eee:renene:v:88:y:2016:i:c:p:359-371
    DOI: 10.1016/j.renene.2015.11.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115304572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.11.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hughes, Michael G. & Heap, Andrew D., 2010. "National-scale wave energy resource assessment for Australia," Renewable Energy, Elsevier, vol. 35(8), pages 1783-1791.
    2. Kim, Gunwoo & Jeong, Weon Mu & Lee, Kwang Soo & Jun, Kicheon & Lee, Myung Eun, 2011. "Offshore and nearshore wave energy assessment around the Korean Peninsula," Energy, Elsevier, vol. 36(3), pages 1460-1469.
    3. Liang, Bingchen & Fan, Fei & Yin, Zegao & Shi, Hongda & Lee, Dongyong, 2013. "Numerical modelling of the nearshore wave energy resources of Shandong peninsula, China," Renewable Energy, Elsevier, vol. 57(C), pages 330-338.
    4. Arinaga, Randi A. & Cheung, Kwok Fai, 2012. "Atlas of global wave energy from 10 years of reanalysis and hindcast data," Renewable Energy, Elsevier, vol. 39(1), pages 49-64.
    5. Stopa, Justin E. & Filipot, Jean-François & Li, Ning & Cheung, Kwok Fai & Chen, Yi-Leng & Vega, Luis, 2013. "Wave energy resources along the Hawaiian Island chain," Renewable Energy, Elsevier, vol. 55(C), pages 305-321.
    6. Kofoed, J.P. & Pecher, A. & Margheritini, L. & Antonishen, M. & Bittencourt, C. & Holmes, B. & Retzler, C. & Berthelsen, K. & Le Crom, I. & Neumann, F. & Johnstone, C. & McCombes, T. & Myers, L.E., 2013. "A methodology for equitable performance assessment and presentation of wave energy converters based on sea trials," Renewable Energy, Elsevier, vol. 52(C), pages 99-110.
    7. Sanil Kumar, V. & Anoop, T.R., 2015. "Wave energy resource assessment for the Indian shelf seas," Renewable Energy, Elsevier, vol. 76(C), pages 212-219.
    8. Bernhoff, Hans & Sjöstedt, Elisabeth & Leijon, Mats, 2006. "Wave energy resources in sheltered sea areas: A case study of the Baltic Sea," Renewable Energy, Elsevier, vol. 31(13), pages 2164-2170.
    9. Zhang, Dahai & Li, Wei & Lin, Yonggang, 2009. "Wave energy in China: Current status and perspectives," Renewable Energy, Elsevier, vol. 34(10), pages 2089-2092.
    10. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2009. "Wave power potential along the Atlantic coast of the southeastern USA," Renewable Energy, Elsevier, vol. 34(10), pages 2197-2205.
    11. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    12. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Wave energy conditions in the western French coast," Renewable Energy, Elsevier, vol. 62(C), pages 155-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silva, R.N. & Nunes, M.M. & Oliveira, F.L. & Oliveira, T.F. & Brasil, A.C.P. & Pinto, M.S.S., 2023. "Dynamical analysis of a novel hybrid oceanic tidal-wave energy converter system," Energy, Elsevier, vol. 263(PD).
    2. Sun, Peidong & Xu, Bin & Wang, Jichao, 2022. "Long-term trend analysis and wave energy assessment based on ERA5 wave reanalysis along the Chinese coastline," Applied Energy, Elsevier, vol. 324(C).
    3. Sun, Ze & Zhang, Haicheng & Xu, Daolin & Liu, Xiaolong & Ding, Jun, 2020. "Assessment of wave power in the South China Sea based on 26-year high-resolution hindcast data," Energy, Elsevier, vol. 197(C).
    4. Uti, Mat Nizam & Md Din, Ami Hassan & Yusof, Norhakim & Yaakob, Omar, 2023. "A spatial-temporal clustering for low ocean renewable energy resources using K-means clustering," Renewable Energy, Elsevier, vol. 219(P2).
    5. Seongho Ahn & Kevin A. Haas & Vincent S. Neary, 2020. "Dominant Wave Energy Systems and Conditional Wave Resource Characterization for Coastal Waters of the United States," Energies, MDPI, vol. 13(12), pages 1-26, June.
    6. Zanous, Sina Pasha & Shafaghat, Rouzbeh & Alamian, Rezvan & Shadloo, Mostafa Safdari & Khosravi, Mohammad, 2019. "Feasibility study of wave energy harvesting along the southern coast and islands of Iran," Renewable Energy, Elsevier, vol. 135(C), pages 502-514.
    7. Liang, Bingchen & Shao, Zhuxiao & Wu, Guoxiang & Shao, Meng & Sun, Jinwei, 2017. "New equations of wave energy assessment accounting for the water depth," Applied Energy, Elsevier, vol. 188(C), pages 130-139.
    8. Hua Liu & Weijun Wang & Shuai Tang & Longbo Mao & Hongju Mi & Guoping Zhang & Jun Liu, 2019. "Reliability Assessment of Water Hydraulic-Drive Wave-Energy Converters," Energies, MDPI, vol. 12(21), pages 1-21, November.
    9. Liang, Bingchen & Shao, Zhuxiao & Wu, Yajie & Shi, Hongda & Liu, Zhen, 2017. "Numerical study to estimate the wave energy under Wave-Current Interaction in the Qingdao coast, China," Renewable Energy, Elsevier, vol. 101(C), pages 845-855.
    10. Ahn, Seongho & Haas, Kevin A. & Neary, Vincent S., 2020. "Wave energy resource characterization and assessment for coastal waters of the United States," Applied Energy, Elsevier, vol. 267(C).
    11. Kamranzad, Bahareh & Lin, Pengzhi, 2020. "Sustainability of wave energy resources in the South China Sea based on five decades of changing climate," Energy, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    2. Wang, Zhifeng & Dong, Sheng & Li, Xue & Guedes Soares, C., 2016. "Assessments of wave energy in the Bohai Sea, China," Renewable Energy, Elsevier, vol. 90(C), pages 145-156.
    3. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    4. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    5. Zhou, Guoqing & Huang, Jingjin & Zhang, Guangyun, 2015. "Evaluation of the wave energy conditions along the coastal waters of Beibu Gulf, China," Energy, Elsevier, vol. 85(C), pages 449-457.
    6. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    7. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    8. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    9. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    10. Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.
    11. Jahangir, Mohammad Hossein & Mazinani, Mehran, 2020. "Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea," Renewable Energy, Elsevier, vol. 152(C), pages 331-346.
    12. Zhou, Guoqing & Huang, Jingjin & Yue, Tao & Luo, Qingli & Zhang, Guangyun, 2015. "Temporal-spatial distribution of wave energy: A case study of Beibu Gulf, China," Renewable Energy, Elsevier, vol. 74(C), pages 344-356.
    13. Zanous, Sina Pasha & Shafaghat, Rouzbeh & Alamian, Rezvan & Shadloo, Mostafa Safdari & Khosravi, Mohammad, 2019. "Feasibility study of wave energy harvesting along the southern coast and islands of Iran," Renewable Energy, Elsevier, vol. 135(C), pages 502-514.
    14. Kamranzad, Bahareh & Chegini, Vahid & Etemad-Shahidi, Amir, 2016. "Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves," Renewable Energy, Elsevier, vol. 94(C), pages 341-352.
    15. Sanil Kumar, V. & Anoop, T.R., 2015. "Wave energy resource assessment for the Indian shelf seas," Renewable Energy, Elsevier, vol. 76(C), pages 212-219.
    16. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
    17. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    18. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    19. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    20. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:88:y:2016:i:c:p:359-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.