IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp564-573.html
   My bibliography  Save this article

Response of wave energy to tidal currents in the western sea of Jeju Island, Korea

Author

Listed:
  • Hong, Ji-Seok
  • Moon, Jae-Hong
  • Kim, Taekyun
  • Cho, Il-Hyoung
  • Choi, Jongsu
  • Park, Ji Yong

Abstract

This study focuses on the changes in wave energy in response to tidal currents in the western sea of Jeju Island where high-energy wave conditions along with strong tidal currents are usual. Here, an ocean-wave coupled modeling system was used to investigate the effect of tidal currents on the wave energy condition. A comparative experiment with and without tidal currents shows that the current largely affects wave energy in terms of the wave spectrum as a response to the relative direction between waves and currents. When the direction of the tidal current is the same as that of wave propagation, the magnitude of wave height is reduced with energy transfer from shorter periods of 7–9 s to longer periods of 10–12 s, resulting in a decrease (increase) of shorter (longer) wave energy. This reaction is reversed when the tidal current flows in a direction opposite to that of wave propagation. The uncoupled model tends to overestimate/underestimate the wave energy during the ebb/flood tides when the waves follow/oppose the currents by approximately 25%. This study demonstrates that ocean-wave coupling is capable of improving model wave conditions, and therefore, this model is useful for estimating potential wave energy resource and candidate sites.

Suggested Citation

  • Hong, Ji-Seok & Moon, Jae-Hong & Kim, Taekyun & Cho, Il-Hyoung & Choi, Jongsu & Park, Ji Yong, 2021. "Response of wave energy to tidal currents in the western sea of Jeju Island, Korea," Renewable Energy, Elsevier, vol. 172(C), pages 564-573.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:564-573
    DOI: 10.1016/j.renene.2021.03.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121004080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guillou, Nicolas, 2017. "Modelling effects of tidal currents on waves at a tidal stream energy site," Renewable Energy, Elsevier, vol. 114(PA), pages 180-190.
    2. Liang, Bingchen & Shao, Zhuxiao & Wu, Guoxiang & Shao, Meng & Sun, Jinwei, 2017. "New equations of wave energy assessment accounting for the water depth," Applied Energy, Elsevier, vol. 188(C), pages 130-139.
    3. Fairley, I. & Smith, H.C.M. & Robertson, B. & Abusara, M. & Masters, I., 2017. "Spatio-temporal variation in wave power and implications for electricity supply," Renewable Energy, Elsevier, vol. 114(PA), pages 154-165.
    4. Liang, Bingchen & Shao, Zhuxiao & Wu, Yajie & Shi, Hongda & Liu, Zhen, 2017. "Numerical study to estimate the wave energy under Wave-Current Interaction in the Qingdao coast, China," Renewable Energy, Elsevier, vol. 101(C), pages 845-855.
    5. Saincher, Shaswat & Banerjee, Jyotirmay, 2016. "Influence of wave breaking on the hydrodynamics of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 704-717.
    6. Ozkan, Cigdem & Mayo, Talea, 2019. "The renewable wave energy resource in coastal regions of the Florida peninsula," Renewable Energy, Elsevier, vol. 139(C), pages 530-537.
    7. Hashemi, M. Reza & Neill, Simon P., 2014. "The role of tides in shelf-scale simulations of the wave energy resource," Renewable Energy, Elsevier, vol. 69(C), pages 300-310.
    8. Barbariol, Francesco & Benetazzo, Alvise & Carniel, Sandro & Sclavo, Mauro, 2013. "Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling," Renewable Energy, Elsevier, vol. 60(C), pages 462-471.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    2. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
    3. Shao, Zhuxiao & Gao, Huijun & Liang, Bingchen & Lee, Dongyoung, 2022. "Potential, trend and economic assessments of global wave power," Renewable Energy, Elsevier, vol. 195(C), pages 1087-1102.
    4. Su, Wen-Ray & Chen, Hongey & Chen, Wei-Bo & Chang, Chih-Hsin & Lin, Lee-Yaw & Jang, Jiun-Huei & Yu, Yi-Chiang, 2018. "Numerical investigation of wave energy resources and hotspots in the surrounding waters of Taiwan," Renewable Energy, Elsevier, vol. 118(C), pages 814-824.
    5. Guillou, Nicolas, 2017. "Modelling effects of tidal currents on waves at a tidal stream energy site," Renewable Energy, Elsevier, vol. 114(PA), pages 180-190.
    6. Nicolas Guillou & George Lavidas & Bahareh Kamranzad, 2023. "Wave Energy in Brittany (France)—Resource Assessment and WEC Performances," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    7. Rasool, Safdar & Muttaqi, Kashem M. & Sutanto, Danny, 2020. "Modelling of a wave-to-wire system for a wave farm and its response analysis against power quality and grid codes," Renewable Energy, Elsevier, vol. 162(C), pages 2041-2055.
    8. Hashemi, M. Reza & Neill, Simon P. & Robins, Peter E. & Davies, Alan G. & Lewis, Matt J., 2015. "Effect of waves on the tidal energy resource at a planned tidal stream array," Renewable Energy, Elsevier, vol. 75(C), pages 626-639.
    9. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    10. Guillou, Nicolas & Chapalain, Georges, 2015. "Numerical modelling of nearshore wave energy resource in the Sea of Iroise," Renewable Energy, Elsevier, vol. 83(C), pages 942-953.
    11. Hashemi, M. Reza & Grilli, Stéphan T. & Neill, Simon P., 2016. "A simplified method to estimate tidal current effects on the ocean wave power resource," Renewable Energy, Elsevier, vol. 96(PA), pages 257-269.
    12. Guillou, Nicolas & Chapalain, Georges, 2018. "Annual and seasonal variabilities in the performances of wave energy converters," Energy, Elsevier, vol. 165(PB), pages 812-823.
    13. Liang, Bingchen & Shao, Zhuxiao & Wu, Yajie & Shi, Hongda & Liu, Zhen, 2017. "Numerical study to estimate the wave energy under Wave-Current Interaction in the Qingdao coast, China," Renewable Energy, Elsevier, vol. 101(C), pages 845-855.
    14. Duan, Derong & Lin, Xiangyang & Wang, Muhao & Liu, Xia & Gao, Changqing & Zhang, Hui & Yang, Xuefeng, 2024. "Study on energy conversion efficiency of wave generation in shake plate mode," Energy, Elsevier, vol. 290(C).
    15. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    16. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    17. Natalia Gonzalez & Paul Serna-Torre & Pedro A. Sánchez-Pérez & Ryan Davidson & Bryan Murray & Martin Staadecker & Julia Szinai & Rachel Wei & Daniel M. Kammen & Deborah A. Sunter & Patricia Hidalgo-Go, 2024. "Offshore wind and wave energy can reduce total installed capacity required in zero-emissions grids," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J., 2014. "Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes," Renewable Energy, Elsevier, vol. 72(C), pages 311-321.
    19. Xiao, Han & Liu, Zhenwei & Zhang, Ran & Kelham, Andrew & Xu, Xiangyang & Wang, Xu, 2021. "Study of a novel rotational speed amplified dual turbine wheel wave energy converter," Applied Energy, Elsevier, vol. 301(C).
    20. Guillou, Nicolas & Thiébot, Jérôme & Chapalain, Georges, 2019. "Turbines’ effects on water renewal within a marine tidal stream energy site," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:564-573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.