IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip2p2168-2180.html
   My bibliography  Save this article

Numerical investigation on band-broadening characteristics of an ordered packed bed with novel particles

Author

Listed:
  • Li, Long
  • Yan, Xiaohong
  • Yang, Jian
  • Wang, Qiuwang

Abstract

Ordered structures are considered as the potential choice to improve the efficiency of separation. Moreover, the pore connectivity and pore size distribution of structured packed beds could be designed to improve the column separation performance. We have investigated the separation performance of different ordered packings in detail with the volume averaging method and numerical simulations, including simple cubic (SC), body center cubic (BCC), and face center cubic (FCC) packing with different particles. The effects of packing forms and particle shapes are discussed. Firstly, it is found that, the effects of packing forms and particle shapes on the plate height are remarkable. In the simple cubic packing, long ellipsoidal models have better separation performance and the channel effect makes molecular longitudinal diffusion insensitive to particle shapes. Secondly, with the same particle shape, the separation performance in the FCC packing is better. Compared with the corresponding configurations with spherical particles, the plate heights of long ellipsoidal particle models are remarkably reduced in the SC and BCC packing. Long ellipsoidal particles can enhance longitudinal diffusion obviously in the BCC and FCC packing. Thirdly, in the composite packing forms, the configurations with the same particles at the eight corners of the unit cell (BCC-S and BCC-S-S, BCC-L2 and BCC-L2-S) have the similar separation performance. Moreover, composite packings do not always improve separation performance. Finally, the unified equation form of separation performance is firstly proposed by the investigation of various ordered packed beds. By data fitting, the reduced longitudinal dispersion can be represented by the same power law pattern. Two velocity dependent factors consist of the same power law and fractional function form. These results provide more detailed flow characteristics and mass transfer process in ordered packed beds.

Suggested Citation

  • Li, Long & Yan, Xiaohong & Yang, Jian & Wang, Qiuwang, 2017. "Numerical investigation on band-broadening characteristics of an ordered packed bed with novel particles," Applied Energy, Elsevier, vol. 185(P2), pages 2168-2180.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:2168-2180
    DOI: 10.1016/j.apenergy.2016.03.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916303658
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.03.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zanganeh, G. & Pedretti, A. & Haselbacher, A. & Steinfeld, A., 2015. "Design of packed bed thermal energy storage systems for high-temperature industrial process heat," Applied Energy, Elsevier, vol. 137(C), pages 812-822.
    2. Peng, Hao & Li, Rui & Ling, Xiang & Dong, Huihua, 2015. "Modeling on heat storage performance of compressed air in a packed bed system," Applied Energy, Elsevier, vol. 160(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    2. Wang, Jingyu & Yang, Jian & Cheng, Zhilong & Liu, Yan & Chen, Yitung & Wang, Qiuwang, 2018. "Experimental and numerical study on pressure drop and heat transfer performance of grille-sphere composite structured packed bed," Applied Energy, Elsevier, vol. 227(C), pages 719-730.
    3. Cui, Zheng & Shao, Wei & Chen, Zhaoyou & Cheng, Lin, 2017. "Mathematical model and numerical solutions for the coupled gas–solid heat transfer process in moving packed beds," Applied Energy, Elsevier, vol. 206(C), pages 1297-1308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Wei & Cui, Zheng & Chen, Zhao-you & Wang, Jing-chen & Liu, Yu & Ren, Xiao-han & Luo, Feng, 2019. "Experimental and numerical measurements of the channel packed with disordered cement granules regarding the heat transfer performance," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Wang, Jingyu & Yang, Jian & Cheng, Zhilong & Liu, Yan & Chen, Yitung & Wang, Qiuwang, 2018. "Experimental and numerical study on pressure drop and heat transfer performance of grille-sphere composite structured packed bed," Applied Energy, Elsevier, vol. 227(C), pages 719-730.
    3. Mawire, Ashmore & Ekwomadu, Chidiebere S. & Lefenya, Tlotlo M. & Shobo, Adedamola, 2020. "Performance comparison of two metallic eutectic solder based medium-temperature domestic thermal energy storage systems," Energy, Elsevier, vol. 194(C).
    4. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
    5. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2017. "Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 195(C), pages 761-773.
    6. Peng, Hao & Shan, Xuekun & Yang, Yu & Ling, Xiang, 2018. "A study on performance of a liquid air energy storage system with packed bed units," Applied Energy, Elsevier, vol. 211(C), pages 126-135.
    7. Tang, Yong & Wang, Zhichao & Zhou, Jinzhi & Zeng, Chao & Lyu, Weihua & Lu, Lin & Yuan, Yanping, 2024. "Experimental study on the performance of packed-bed latent thermal energy storage system employing spherical capsules with hollow channels," Energy, Elsevier, vol. 293(C).
    8. Mao, Qianjun & Zhang, Yamei, 2020. "Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system," Renewable Energy, Elsevier, vol. 152(C), pages 110-119.
    9. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    10. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    11. Mario Cascetta & Fabio Serra & Simone Arena & Efisio Casti & Giorgio Cau & Pierpaolo Puddu, 2016. "Experimental and Numerical Research Activity on a Packed Bed TES System," Energies, MDPI, vol. 9(9), pages 1-13, September.
    12. Robert Morgan & Christian Rota & Emily Pike-Wilson & Tim Gardhouse & Cian Quinn, 2020. "The Modelling and Experimental Validation of a Cryogenic Packed Bed Regenerator for Liquid Air Energy Storage Applications," Energies, MDPI, vol. 13(19), pages 1-17, October.
    13. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
    14. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Hoffmann, J.-F., 2018. "A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 212(C), pages 1153-1164.
    15. Wanruo Lou & Lingai Luo & Yuchao Hua & Yilin Fan & Zhenyu Du, 2021. "A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    16. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    17. Chang, Chun & Sciacovelli, Adriano & Wu, Zhiyong & Li, Xin & Li, Yongliang & Zhao, Mingzhi & Deng, Jie & Wang, Zhifeng & Ding, Yulong, 2018. "Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 220(C), pages 337-350.
    18. de Gracia, Alvaro & Cabeza, Luisa F., 2017. "Numerical simulation of a PCM packed bed system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1055-1063.
    19. Lutsenko, Nickolay A. & Fetsov, Sergey S., 2020. "Effect of side walls shape on charging and discharging performance of thermal energy storages based on granular phase change materials," Renewable Energy, Elsevier, vol. 162(C), pages 466-477.
    20. Singh, Shobhana & Sørensen, Kim & Condra, Thomas & Batz, Søren Søndergaard & Kristensen, Kristian, 2019. "Investigation on transient performance of a large-scale packed-bed thermal energy storage," Applied Energy, Elsevier, vol. 239(C), pages 1114-1129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:2168-2180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.