IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp2490-2509.html
   My bibliography  Save this article

Adaptive pitch control for ships with diesel mechanical and hybrid propulsion

Author

Listed:
  • Geertsma, R.D.
  • Visser, K.
  • Negenborn, R.R.

Abstract

Shipping urgently needs to reduce its impact on the environment, both due to CO2, NOx and particulate matter (PM) emissions and due to underwater noise. On the other hand, multifunction ships such as offshore support vessels, anchor handling and towing vessels, naval vessels and wind farm construction and support vessels require fast and accurate manoeuvring and need highly reliable systems to support reduced or no crew. Diesel mechanical propulsion with controllable pitch propellers provides high efficiency and low CO2 emissions, but has traditionally been poor in manoeuvrability, can suffer from thermal overloading due to manoeuvring and requires significant measures to meet NOx and PM emission regulations. The control strategy of diesel mechanical propulsion with fixed combinator curves is one of the causes of the poor manoeuvrability, thermal overloading and cavitation noise during manoeuvring, such as slam start and intermediate acceleration manoeuvres. This paper proposes an adaptive pitch control strategy with slow integrating speed control that reduces fuel consumption, CO2, NOx and PM emissions and underwater noise, improves acceleration performance, limits engine loading and prevents engine under- and overspeed. A simulation study with a validated model of a case study Holland class Patrol Vessel demonstrates 5–15% reduction in fuel consumption and CO2 emissions, compared to the baseline transit control mode in the ship speed range from 6 to 15 kts, during constant speed sailing. Moreover, the adaptive pitch control strategy reduces acceleration time from 0 to 15 kts with the slam start procedure by 32% compared to the baseline manoeuvre control mode and by 84% for an intermediate acceleration from 10 to 15 kts, while preventing thermal overloading of the engine, during straight line manoeuvres. Combining this control strategy with hybrid propulsion, running an electric drive in parallel with the propulsion diesel engine, can potentially further reduce fuel consumption at low speeds while also improving acceleration performance even more. Therefore, hybrid propulsion plants with controllable pitch propellers and adaptive pitch control can provide a significant contribution to the urgent reduction of environmental impact of shipping and to the need for more autonomous and reliable ship systems.

Suggested Citation

  • Geertsma, R.D. & Visser, K. & Negenborn, R.R., 2018. "Adaptive pitch control for ships with diesel mechanical and hybrid propulsion," Applied Energy, Elsevier, vol. 228(C), pages 2490-2509.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:2490-2509
    DOI: 10.1016/j.apenergy.2018.07.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918311127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.07.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baldi, Francesco & Theotokatos, Gerasimos & Andersson, Karin, 2015. "Development of a combined mean value–zero dimensional model and application for a large marine four-stroke Diesel engine simulation," Applied Energy, Elsevier, vol. 154(C), pages 402-415.
    2. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    3. Mondejar, Maria E. & Ahlgren, Fredrik & Thern, Marcus & Genrup, Magnus, 2017. "Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel," Applied Energy, Elsevier, vol. 185(P2), pages 1324-1335.
    4. Cignitti, Stefano & Andreasen, Jesper G. & Haglind, Fredrik & Woodley, John M. & Abildskov, Jens, 2017. "Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery," Applied Energy, Elsevier, vol. 203(C), pages 442-453.
    5. Li, Shijie & Negenborn, Rudy R. & Lodewijks, Gabriel, 2017. "Closed-loop coordination of inland vessels operations in large seaports using hybrid logic-based benders decomposition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 1-21.
    6. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    7. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
    8. Sapra, Harsh & Godjevac, Milinko & Visser, Klaas & Stapersma, Douwe & Dijkstra, Chris, 2017. "Experimental and simulation-based investigations of marine diesel engine performance against static back pressure," Applied Energy, Elsevier, vol. 204(C), pages 78-92.
    9. Zheng, Huarong & Negenborn, Rudy R. & Lodewijks, Gabriël, 2017. "Closed-loop scheduling and control of waterborne AGVs for energy-efficient Inter Terminal Transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 261-278.
    10. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Loonstijn, M.A. & Hopman, J.J., 2017. "Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification," Applied Energy, Elsevier, vol. 206(C), pages 1609-1631.
    11. Shu, Gequn & Liang, Youcai & Wei, Haiqiao & Tian, Hua & Zhao, Jian & Liu, Lina, 2013. "A review of waste heat recovery on two-stroke IC engine aboard ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 385-401.
    12. Guan, Cong & Theotokatos, Gerasimos & Zhou, Peilin & Chen, Hui, 2014. "Computational investigation of a large containership propulsion engine operation at slow steaming conditions," Applied Energy, Elsevier, vol. 130(C), pages 370-383.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haseltalab, Ali & Negenborn, Rudy R., 2019. "Model predictive maneuvering control and energy management for all-electric autonomous ships," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Loonstijn, M.A. & Hopman, J.J., 2017. "Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification," Applied Energy, Elsevier, vol. 206(C), pages 1609-1631.
    2. Theotokatos, Gerasimos & Guan, Cong & Chen, Hui & Lazakis, Iraklis, 2018. "Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings," Energy, Elsevier, vol. 143(C), pages 533-545.
    3. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
    4. Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
    5. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    6. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Sapra, Harsh & Godjevac, Milinko & Visser, Klaas & Stapersma, Douwe & Dijkstra, Chris, 2017. "Experimental and simulation-based investigations of marine diesel engine performance against static back pressure," Applied Energy, Elsevier, vol. 204(C), pages 78-92.
    8. Haseltalab, Ali & Negenborn, Rudy R., 2019. "Model predictive maneuvering control and energy management for all-electric autonomous ships," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Tang, Yuanyuan & Zhang, Jundong & Gan, Huibing & Jia, Baozhu & Xia, Yu, 2017. "Development of a real-time two-stroke marine diesel engine model with in-cylinder pressure prediction capability," Applied Energy, Elsevier, vol. 194(C), pages 55-70.
    10. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    12. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    13. Catapano, F. & Frazzica, A. & Freni, A. & Manzan, M. & Micheli, D. & Palomba, V. & Sementa, P. & Vaglieco, B.M., 2022. "Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application," Applied Energy, Elsevier, vol. 311(C).
    14. Iqbal, Rashid & Liu, Yancheng & Zeng, Yuji & Zhang, Qinjin & Zeeshan, Muhammad, 2024. "Comparative study based on techno-economics analysis of different shipboard microgrid systems comprising PV/wind/fuel cell/battery/diesel generator with two battery technologies: A step toward green m," Renewable Energy, Elsevier, vol. 221(C).
    15. Planakis, Nikolaos & Papalambrou, George & Kyrtatos, Nikolaos, 2022. "Ship energy management system development and experimental evaluation utilizing marine loading cycles based on machine learning techniques," Applied Energy, Elsevier, vol. 307(C).
    16. Larsen, Ulrik & Pierobon, Leonardo & Baldi, Francesco & Haglind, Fredrik & Ivarsson, Anders, 2015. "Development of a model for the prediction of the fuel consumption and nitrogen oxides emission trade-off for large ships," Energy, Elsevier, vol. 80(C), pages 545-555.
    17. Wang, Zhuang & Chen, Li & Wang, Bin & Huang, Lianzhong & Wang, Kai & Ma, Ranqi, 2023. "Integrated optimization of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors," Energy, Elsevier, vol. 282(C).
    18. Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & lin, Jiansheng & Wei, Haiqiao & Zhou, Peilin, 2018. "Development of a surrogate fuel mechanism for application in two-stroke marine diesel engine," Energy, Elsevier, vol. 153(C), pages 56-64.
    19. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    20. Armellini, A. & Daniotti, S. & Pinamonti, P. & Reini, M., 2018. "Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations," Applied Energy, Elsevier, vol. 211(C), pages 306-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:2490-2509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.