IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v91y2012i1p326-333.html
   My bibliography  Save this article

Thermodynamic simulation of condensation heat recovery characteristics of a single stage centrifugal chiller in a hotel

Author

Listed:
  • Gong, Guangcai
  • Chen, Feihu
  • Su, Huan
  • Zhou, Jianyong

Abstract

A thermodynamic simulation study has been carried out for a single stage centrifugal chiller in this paper. The cooling capacity of the chiller unit is about 1750kW. The chiller unit has been set and tested, and the work refrigerant is R22. A heat exchanger has been set between outlet of the compressor and the condenser for sanitary hot water supplying. Then the chiller unit is a kind of combined system that can provide sanitary hot water supplying and air conditioning simultaneously. A thermodynamic simulation model of the combined system has been established with the system simulation toolbox Simulink. Performance of the components and the combined system of the chiller unit has been studied over a wide range of operating conditions. The potential energy and fuel cost saving associated with the use of the proposed combined system for a typical hotel in south China has been estimated. It is showed that the combined system of the chiller unit is very useful in hotel buildings. And the thermodynamic simulation model of the combined system is significance for the optimization of parameters of the chiller unit such as condensation and evaporation temperature, mass flow of the sanitary hot water and size of hot water storage tank.

Suggested Citation

  • Gong, Guangcai & Chen, Feihu & Su, Huan & Zhou, Jianyong, 2012. "Thermodynamic simulation of condensation heat recovery characteristics of a single stage centrifugal chiller in a hotel," Applied Energy, Elsevier, vol. 91(1), pages 326-333.
  • Handle: RePEc:eee:appene:v:91:y:2012:i:1:p:326-333
    DOI: 10.1016/j.apenergy.2011.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911005034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Alex H. W. & Jones, J. W., 1997. "Analytical model of a residential desuperheater," Applied Energy, Elsevier, vol. 57(4), pages 271-285, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Byrne, 2022. "Research Summary and Literature Review on Modelling and Simulation of Heat Pumps for Simultaneous Heating and Cooling for Buildings," Energies, MDPI, vol. 15(10), pages 1-43, May.
    2. Tipole, Pralhad & Karthikeyan, A. & Bhojwani, Virendra & Patil, Abhay & Oak, Ninad & Ponatil, Amal & Nagori, Palash, 2016. "Applying a magnetic field on liquid line of vapour compression system is a novel technique to increase a performance of the system," Applied Energy, Elsevier, vol. 182(C), pages 376-382.
    3. Duan, Jimiao & Gong, Jing & Yao, Haiyuan & Deng, Tao & Zhou, Jun, 2014. "Numerical modeling for stratified gas–liquid flow and heat transfer in pipeline," Applied Energy, Elsevier, vol. 115(C), pages 83-94.
    4. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    5. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    6. Chen, Hongxia & Xu, Jinliang & Li, Zijin & Xing, Feng & Xie, Jian, 2013. "Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface," Applied Energy, Elsevier, vol. 112(C), pages 1283-1290.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krohn, C. M. & Krohn, C. G., 2001. "Letter to the Editor," Applied Energy, Elsevier, vol. 69(3), pages 239-241, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:91:y:2012:i:1:p:326-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.