IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923015143.html
   My bibliography  Save this article

Differentiated power rationing or seasonal power price? Optimal power allocation solution for Chinese industrial enterprises based on the CSW-DEA model

Author

Listed:
  • Zhang, Chonghui
  • Wang, Zhen
  • Su, Weihua
  • Dalia, Streimikiene

Abstract

Seasonal power price (SPP) and differentiated power rationing (DPR) are two solutions for tackling power shortages as they adjust power allocation, alleviate power supply–demand contradictions, and promote the sustainable development of the energy industry. Based on microdata from 9593 industrial enterprises in China, this study analyzes the effects of SPP and DPR on allocating power resources optimally. The results reveal the following. (1) Under SPP, the price of power fluctuates in summer between 0.4627 and 0.5047 yuan/kWh, while spring-autumn and winter prices remain stable at 0.3785 yuan/kWh and 0.4627 yuan/kWh, respectively. (2) Under DPR, according to industrial efficiency and the optimal enterprise power rationing ratio, power rationing solutions can be summarized into forced, moderate, and incentive types. (3) SPP and DPR can effectively alleviate power shortages. However, SPP is superior in maintaining balanced industrial development and reducing power costs by guiding enterprises toward off-peak production through price adjustment mechanisms. Finally, policy implications are illustrated in implementing SPP and DPR in the case of power shortages.

Suggested Citation

  • Zhang, Chonghui & Wang, Zhen & Su, Weihua & Dalia, Streimikiene, 2024. "Differentiated power rationing or seasonal power price? Optimal power allocation solution for Chinese industrial enterprises based on the CSW-DEA model," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015143
    DOI: 10.1016/j.apenergy.2023.122150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Afsharian, Mohsen & Ahn, Heinz & Thanassoulis, Emmanuel, 2017. "A DEA-based incentives system for centrally managed multi-unit organisations," European Journal of Operational Research, Elsevier, vol. 259(2), pages 587-598.
    2. Dong, Jun & Xue, Guiyuan & Li, Rong, 2016. "Demand response in China: Regulations, pilot projects and recommendations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 13-27.
    3. Deng, Tingting & Yan, Wenzhou & Nojavan, Sayyad & Jermsittiparsert, Kittisak, 2020. "Risk evaluation and retail electricity pricing using downside risk constraints method," Energy, Elsevier, vol. 192(C).
    4. Bjørndal, Endre & Bjørndal, Mette & Cai, Hong & Panos, Evangelos, 2018. "Hybrid pricing in a coupled European power market with more wind power," European Journal of Operational Research, Elsevier, vol. 264(3), pages 919-931.
    5. Grainger, Corbett A. & Zhang, Fan, 2019. "Electricity shortages and manufacturing productivity in Pakistan," Energy Policy, Elsevier, vol. 132(C), pages 1000-1008.
    6. de Nooij, Michiel & Lieshout, Rogier & Koopmans, Carl, 2009. "Optimal blackouts: Empirical results on reducing the social cost of electricity outages through efficient regional rationing," Energy Economics, Elsevier, vol. 31(3), pages 342-347, May.
    7. Du, Juan & Cook, Wade D. & Liang, Liang & Zhu, Joe, 2014. "Fixed cost and resource allocation based on DEA cross-efficiency," European Journal of Operational Research, Elsevier, vol. 235(1), pages 206-214.
    8. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    9. Botelho, Vinícius, 2019. "Estimating the economic impacts of power supply interruptions," Energy Economics, Elsevier, vol. 80(C), pages 983-994.
    10. Yang, Chi-Jen, 2017. "Opportunities and barriers to demand response in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 51-55.
    11. Véliz, Karina D. & Kaufmann, Robert K. & Cleveland, Cutler J. & Stoner, Anne M.K., 2017. "The effect of climate change on electricity expenditures in Massachusetts," Energy Policy, Elsevier, vol. 106(C), pages 1-11.
    12. Mahdiloo, Mahdi & Ngwenyama, Ojelanki & Scheepers, Rens & Tamaddoni, Ali, 2018. "Managing emissions allowances of electricity producers to maximize CO2 abatement: DEA models for analyzing emissions and allocating emissions allowances," International Journal of Production Economics, Elsevier, vol. 205(C), pages 244-255.
    13. Zhou, Yang & Ma, Rong & Su, Yun & Wu, Libo, 2019. "Too big to change: How heterogeneous firms respond to time-of-use electricity price," China Economic Review, Elsevier, vol. 58(C).
    14. Greening, Lorna A., 2010. "Demand response resources: Who is responsible for implementation in a deregulated market?," Energy, Elsevier, vol. 35(4), pages 1518-1525.
    15. Haneem, Faizura & Kama, Nazri & Taskin, Nazim & Pauleen, David & Abu Bakar, Nur Azaliah, 2019. "Determinants of master data management adoption by local government organizations: An empirical study," International Journal of Information Management, Elsevier, vol. 45(C), pages 25-43.
    16. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    17. Ausubel, Lawrence M. & Cramton, Peter, 2010. "Using forward markets to improve electricity market design," Utilities Policy, Elsevier, vol. 18(4), pages 195-200, December.
    18. Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
    19. Yueming Qiu & Loren Kirkeide & Yi David Wang, 2018. "Effects of Voluntary Time-of-Use Pricing on Summer Electricity Usage of Business Customers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(2), pages 417-440, February.
    20. Shen, Bo & Ghatikar, Girish & Lei, Zeng & Li, Jinkai & Wikler, Greg & Martin, Phil, 2014. "The role of regulatory reforms, market changes, and technology development to make demand response a viable resource in meeting energy challenges," Applied Energy, Elsevier, vol. 130(C), pages 814-823.
    21. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    22. Chassin, David P. & Rondeau, Daniel, 2016. "Aggregate modeling of fast-acting demand response and control under real-time pricing," Applied Energy, Elsevier, vol. 181(C), pages 288-298.
    23. O׳Connell, Niamh & Pinson, Pierre & Madsen, Henrik & O׳Malley, Mark, 2014. "Benefits and challenges of electrical demand response: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 686-699.
    24. Adom, Philip Kofi, 2017. "The long-run price sensitivity dynamics of industrial and residential electricity demand: The impact of deregulating electricity prices," Energy Economics, Elsevier, vol. 62(C), pages 43-60.
    25. Delorit, Justin D. & Schuldt, Steven J. & Chini, Christopher M., 2020. "Evaluating an adaptive management strategy for organizational energy use under climate uncertainty," Energy Policy, Elsevier, vol. 142(C).
    26. Cecilio Mar-Molinero & Diego Prior & Maria-Manuela Segovia & Fabiola Portillo, 2014. "On centralized resource utilization and its reallocation by using DEA," Annals of Operations Research, Springer, vol. 221(1), pages 273-283, October.
    27. Stucki, Tobias, 2019. "Which firms benefit from investments in green energy technologies? – The effect of energy costs," Research Policy, Elsevier, vol. 48(3), pages 546-555.
    28. Varmaz, Armin & Varwig, Andreas & Poddig, Thorsten, 2013. "Centralized resource planning and Yardstick competition," Omega, Elsevier, vol. 41(1), pages 112-118.
    29. Fraunholz, Christoph & Hladik, Dirk & Keles, Dogan & Möst, Dominik & Fichtner, Wolf, 2021. "On the long-term efficiency of market splitting in Germany," Energy Policy, Elsevier, vol. 149(C).
    30. Thomas, Douglas & Fung, Juan, 2022. "Measuring downstream supply chain losses due to power disturbances," Energy Economics, Elsevier, vol. 114(C).
    31. Ming, Zeng & Song, Xue & Mingjuan, Ma & Lingyun, Li & Min, Cheng & Yuejin, Wang, 2013. "Historical review of demand side management in China: Management content, operation mode, results assessment and relative incentives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 470-482.
    32. Xiao, Zumian & Gao, Juanhe & Wang, Zongshu & Yin, Zhichao & Xiang, Lijin, 2022. "Power shortage and firm productivity: Evidence from the World Bank Enterprise Survey," Energy, Elsevier, vol. 247(C).
    33. Sunhee Baik & Alexander L. Davis & Jun Woo Park & Selin Sirinterlikci & M. Granger Morgan, 2020. "Estimating what US residential customers are willing to pay for resilience to large electricity outages of long duration," Nature Energy, Nature, vol. 5(3), pages 250-258, March.
    34. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2021. "A review of DEA approaches applying a common set of weights: The perspective of centralized management," European Journal of Operational Research, Elsevier, vol. 294(1), pages 3-15.
    35. Katharina Gruber & Tobias Gauster & Gregor Laaha & Peter Regner & Johannes Schmidt, 2022. "Profitability and investment risk of Texan power system winterization," Nature Energy, Nature, vol. 7(5), pages 409-416, May.
    36. HATAMI-MARBINI, Adel & TAVANA, Madjid & AGRELL, Per J & HOSSEINZADEH LOTFI, Farhad, 2015. "A common-weights DEA model for centralized resource reduction and target setting," LIDAM Reprints CORE 2642, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    37. Mario Ragwitz & Simone Steinhilber, 2014. "Effectiveness and efficiency of support schemes for electricity from renewable energy sources," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(2), pages 213-229, March.
    38. Liang, Zhuoran & Tian, Zhan & Sun, Laixiang & Feng, Kuishuang & Zhong, Honglin & Gu, Tingting & Liu, Xiaochen, 2016. "Heat wave, electricity rationing, and trade-offs between environmental gains and economic losses: The example of Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 951-959.
    39. Akram Dehnokhalaji & Mojtaba Ghiyasi & Pekka Korhonen, 2017. "Resource allocation based on cost efficiency," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1279-1289, October.
    40. Ai, Hongshan & Xiong, Shiya & Li, Ke & Jia, Pinrong, 2020. "Electricity price and industrial green productivity: Does the “low-electricity price trap” exist?," Energy, Elsevier, vol. 207(C).
    41. Heggie, Alastair & Eager, Dan & McKinnon, Ken & Van Der Weijde, Adriaan H., 2018. "Power rationing in a long-term power shortage," Energy Policy, Elsevier, vol. 121(C), pages 202-210.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa Davtalab-Olyaie & Hadis Mahmudi-Baram & Masoud Asgharian, 2023. "Measuring individual efficiency and unit influence in centrally managed systems," Annals of Operations Research, Springer, vol. 321(1), pages 139-164, February.
    2. Mohsen Afsharian, 2020. "A metafrontier-based yardstick competition mechanism for incentivising units in centrally managed multi-group organisations," Annals of Operations Research, Springer, vol. 288(2), pages 681-700, May.
    3. Menghan Chen & Sheng Ang & Lijing Jiang & Feng Yang, 2020. "Centralized resource allocation based on cross-evaluation considering organizational objective and individual preferences," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 529-565, June.
    4. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    5. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    6. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    7. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    8. Dai, Qianzhi & Li, Yongjun & Lei, Xiyang & Wu, Dengsheng, 2021. "A DEA-based incentive approach for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 292(2), pages 675-686.
    9. Fatras, Nicolas & Ma, Zheng & Duan, Hongbo & Jørgensen, Bo Nørregaard, 2022. "A systematic review of electricity market liberalisation and its alignment with industrial consumer participation: A comparison between the Nordics and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Xiong, Xi & Yang, Guo-liang & Zhou, De-qun & Wang, Zi-long, 2022. "How to allocate multi-period research resources? Centralized resource allocation for public universities in China using a parallel DEA-based approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    11. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    12. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    13. An, Qingxian & Tao, Xiangyang & Chen, Xiaohong, 2023. "Nested frontier-based best practice regulation under asymmetric information in a principal–agent framework," European Journal of Operational Research, Elsevier, vol. 306(1), pages 269-285.
    14. Núñez, F. & Arcos-Vargas, A. & Villa, G., 2020. "Efficiency benchmarking and remuneration of Spanish electricity distribution companies," Utilities Policy, Elsevier, vol. 67(C).
    15. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2021. "A review of DEA approaches applying a common set of weights: The perspective of centralized management," European Journal of Operational Research, Elsevier, vol. 294(1), pages 3-15.
    16. An, Qingxian & Tao, Xiangyang & Xiong, Beibei & Chen, Xiaohong, 2022. "Frontier-based incentive mechanisms for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 302(1), pages 294-308.
    17. Afsharian, Mohsen & Ahn, Heinz & Thanassoulis, Emmanuel, 2019. "A frontier-based system of incentives for units in organisations with varying degrees of decentralisation," European Journal of Operational Research, Elsevier, vol. 275(1), pages 224-237.
    18. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    19. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    20. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.