IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v118y2014icp166-172.html
   My bibliography  Save this article

Accurate simulation of thermoelectric power generating systems

Author

Listed:
  • Montecucco, Andrea
  • Knox, Andrew R.

Abstract

Recent interest in the use of thermoelectric generators (TEGs) to recover waste heat in large-scale applications calls for precise simulation to appropriately design complicated and dynamic systems. The aim of this work is to develop a computer tool to accurately simulate the thermal and electrical dynamics of a real thermoelectric (TE) power generating system.

Suggested Citation

  • Montecucco, Andrea & Knox, Andrew R., 2014. "Accurate simulation of thermoelectric power generating systems," Applied Energy, Elsevier, vol. 118(C), pages 166-172.
  • Handle: RePEc:eee:appene:v:118:y:2014:i:c:p:166-172
    DOI: 10.1016/j.apenergy.2013.12.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913010271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.12.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, HoSung, 2013. "Optimal design of thermoelectric devices with dimensional analysis," Applied Energy, Elsevier, vol. 106(C), pages 79-88.
    2. Champier, D. & Bédécarrats, J.P. & Kousksou, T. & Rivaletto, M. & Strub, F. & Pignolet, P., 2011. "Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove," Energy, Elsevier, vol. 36(3), pages 1518-1526.
    3. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
    4. Qiu, K. & Hayden, A.C.S., 2012. "Development of a novel cascading TPV and TE power generation system," Applied Energy, Elsevier, vol. 91(1), pages 304-308.
    5. O’Shaughnessy, S.M. & Deasy, M.J. & Kinsella, C.E. & Doyle, J.V. & Robinson, A.J., 2013. "Small scale electricity generation from a portable biomass cookstove: Prototype design and preliminary results," Applied Energy, Elsevier, vol. 102(C), pages 374-385.
    6. Xiao, Jinsheng & Yang, Tianqi & Li, Peng & Zhai, Pengcheng & Zhang, Qingjie, 2012. "Thermal design and management for performance optimization of solar thermoelectric generator," Applied Energy, Elsevier, vol. 93(C), pages 33-38.
    7. Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
    8. Suter, C. & Jovanovic, Z.R. & Steinfeld, A., 2012. "A 1kWe thermoelectric stack for geothermal power generation – Modeling and geometrical optimization," Applied Energy, Elsevier, vol. 99(C), pages 379-385.
    9. Kanishka Biswas & Jiaqing He & Ivan D. Blum & Chun-I Wu & Timothy P. Hogan & David N. Seidman & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2012. "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, Nature, vol. 489(7416), pages 414-418, September.
    10. Patyk, Andreas, 2013. "Thermoelectric generators for efficiency improvement of power generation by motor generators – Environmental and economic perspectives," Applied Energy, Elsevier, vol. 102(C), pages 1448-1457.
    11. Cheng, Chin-Hsiang & Huang, Shu-Yu, 2012. "Development of a non-uniform-current model for predicting transient thermal behavior of thermoelectric coolers," Applied Energy, Elsevier, vol. 100(C), pages 326-335.
    12. Sark, W.G.J.H.M. van, 2011. "Feasibility of photovoltaic - Thermoelectric hybrid modules," Applied Energy, Elsevier, vol. 88(8), pages 2785-2790, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R., 2014. "The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel," Applied Energy, Elsevier, vol. 123(C), pages 47-54.
    2. Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R., 2015. "Constant heat characterisation and geometrical optimisation of thermoelectric generators," Applied Energy, Elsevier, vol. 149(C), pages 248-258.
    3. Li, Guoneng & Fan, Yiqi & Li, Qiangsheng & Zheng, Youqu & Zhao, Dan & Wang, Shifeng & Dong, Sijie & Guo, Wenwen & Tang, Yuanjun, 2025. "A review on micro combustion powered thermoelectric generator: History, state-of-the-art and challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    4. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    5. Su, Shanhe & Liu, Tie & Wang, Junyi & Chen, Jincan, 2014. "Evaluation of temperature-dependent thermoelectric performances based on PbTe1−yIy and PbTe: Na/Ag2Te materials," Energy, Elsevier, vol. 70(C), pages 79-85.
    6. Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
    7. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    8. Högblom, Olle & Andersson, Ronnie, 2016. "A simulation framework for prediction of thermoelectric generator system performance," Applied Energy, Elsevier, vol. 180(C), pages 472-482.
    9. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    10. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
    11. Wang, Tian-Hu & Wang, Qiu-Hong & Leng, Chuan & Wang, Xiao-Dong, 2015. "Parameter analysis and optimal design for two-stage thermoelectric cooler," Applied Energy, Elsevier, vol. 154(C), pages 1-12.
    12. Favarel, Camille & Bédécarrats, Jean-Pierre & Kousksou, Tarik & Champier, Daniel, 2014. "Numerical optimization of the occupancy rate of thermoelectric generators to produce the highest electrical power," Energy, Elsevier, vol. 68(C), pages 104-116.
    13. Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
    14. Tian, Hua & Sun, Xiuxiu & Jia, Qi & Liang, Xingyu & Shu, Gequn & Wang, Xu, 2015. "Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine," Energy, Elsevier, vol. 84(C), pages 121-130.
    15. Liang, Xingyu & Sun, Xiuxiu & Tian, Hua & Shu, Gequn & Wang, Yuesen & Wang, Xu, 2014. "Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine," Applied Energy, Elsevier, vol. 130(C), pages 190-199.
    16. Compadre Torrecilla, Marcos & Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R. & Strain, Andrew, 2019. "Novel model and maximum power tracking algorithm for thermoelectric generators operated under constant heat flux," Applied Energy, Elsevier, vol. 256(C).
    17. Liu, Yi-Hua & Chiu, Yi-Hsun & Huang, Jia-Wei & Wang, Shun-Chung, 2016. "A novel maximum power point tracker for thermoelectric generation system," Renewable Energy, Elsevier, vol. 97(C), pages 306-318.
    18. Raman, Perumal & Ram, Narasimhan K. & Gupta, Ruchi, 2014. "Development, design and performance analysis of a forced draft clean combustion cookstove powered by a thermo electric generator with multi-utility options," Energy, Elsevier, vol. 69(C), pages 813-825.
    19. Wang, Xiao-Dong & Wang, Qiu-Hong & Xu, Jin-Liang, 2014. "Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model," Energy, Elsevier, vol. 65(C), pages 419-429.
    20. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:118:y:2014:i:c:p:166-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.