Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: An exergy analysis of different system designs
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.03.107
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
- Liu, Ming & van der Kleij, A. & Verkooijen, A.H.M. & Aravind, P.V., 2013. "An experimental study of the interaction between tar and SOFCs with Ni/GDC anodes," Applied Energy, Elsevier, vol. 108(C), pages 149-157.
- Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2016. "Vehicle to Grid regulation services of electric delivery trucks: Economic and environmental benefit analysis," Applied Energy, Elsevier, vol. 170(C), pages 161-175.
- Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
- Olateju, Babatunde & Monds, Joshua & Kumar, Amit, 2014. "Large scale hydrogen production from wind energy for the upgrading of bitumen from oil sands," Applied Energy, Elsevier, vol. 118(C), pages 48-56.
- Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Tran, Martino & Banister, David & McCulloch, Malcolm D., 2013. "Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV," Applied Energy, Elsevier, vol. 111(C), pages 206-218.
- Poullikkas, Andreas, 2005. "An overview of current and future sustainable gas turbine technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 409-443, October.
- Kempton, Willett & Tomic, Jasna & Letendre, Steven & Brooks, Alec & Lipman, Timothy, 2001. "Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California," Institute of Transportation Studies, Working Paper Series qt0qp6s4mb, Institute of Transportation Studies, UC Davis.
- Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
- Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
- Neaimeh, Myriam & Wardle, Robin & Jenkins, Andrew M. & Yi, Jialiang & Hill, Graeme & Lyons, Padraig F. & Hübner, Yvonne & Blythe, Phil T. & Taylor, Phil C., 2015. "A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts," Applied Energy, Elsevier, vol. 157(C), pages 688-698.
- Juul, Nina & Meibom, Peter, 2012. "Road transport and power system scenarios for Northern Europe in 2030," Applied Energy, Elsevier, vol. 92(C), pages 573-582.
- Schill, Wolf-Peter & Gerbaulet, Clemens, 2015.
"Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 156, pages 185-196.
- Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power system impacts of electric vehicles in Germany: Charging with coal or renewables?," Applied Energy, Elsevier, vol. 156(C), pages 185-196.
- Wolf-Peter Schill & Clemens Gerbaulet, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables?," Discussion Papers of DIW Berlin 1442, DIW Berlin, German Institute for Economic Research.
- Hidrue, Michael K. & Parsons, George R., 2015. "Is there a near-term market for vehicle-to-grid electric vehicles?," Applied Energy, Elsevier, vol. 151(C), pages 67-76.
- Marongiu, Andrea & Roscher, Marco & Sauer, Dirk Uwe, 2015. "Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles," Applied Energy, Elsevier, vol. 137(C), pages 899-912.
- Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
- Pasaoglu, G. & Fiorello, D. & Martino, A. & Zani, L. & Zubaryeva, A. & Thiel, C., 2014. "Travel patterns and the potential use of electric cars – Results from a direct survey in six European countries," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 51-59.
- Kempton, Willett & Tomic, Jasna & Letendre, Steven & Brooks, Alec & Lipman, Timothy, 2001. "Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California," Institute of Transportation Studies, Working Paper Series qt5cc9g0jp, Institute of Transportation Studies, UC Davis.
- Hamad, Tarek A. & Agll, Abdulhakim A. & Hamad, Yousif M. & Bapat, Sushrut & Thomas, Mathew & Martin, Kevin B. & Sheffield, John W., 2014. "Hydrogen production and End-Uses from combined heat, hydrogen and power system by using local resources," Renewable Energy, Elsevier, vol. 71(C), pages 381-386.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Xiao-long & Xu, Yuan-wu & Zhao, Dong-qi & Zhong, Xiao-bo & Li, Dong & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2020. "Extended-range electric vehicle-oriented thermoelectric surge control of a solid oxide fuel cell system," Applied Energy, Elsevier, vol. 263(C).
- Wu, Zhen & Tan, Peng & Chen, Bin & Cai, Weizi & Chen, Meina & Xu, Xiaoming & Zhang, Zaoxiao & Ni, Meng, 2019. "Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK," Energy, Elsevier, vol. 175(C), pages 567-579.
- Abdellah Essaghouri & Zezhi Zeng & Bingguo Zhao & Changkun Hao & Yuping Qian & Weilin Zhuge & Yangjun Zhang, 2022. "Effects of Radial and Circumferential Flows on Power Density Improvements of Tubular Solid Oxide Fuel Cells," Energies, MDPI, vol. 15(19), pages 1-21, September.
- Alvaro Fernandes & Joerg Brabandt & Oliver Posdziech & Ali Saadabadi & Mayra Recalde & Liyuan Fan & Eva O. Promes & Ming Liu & Theo Woudstra & Purushothaman Vellayan Aravind, 2018. "Design, Construction, and Testing of a Gasifier-Specific Solid Oxide Fuel Cell System," Energies, MDPI, vol. 11(8), pages 1-17, July.
- Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Meng, Xin & Deng, Bohao & Wu, Weifeng & Zhao, Pan, 2023. "Thermodynamic analysis of a novel combined heating and power system based on low temperature solid oxide fuel cell (LT-SOFC) and high temperature proton exchange membrane fuel cell (HT-PEMFC)," Energy, Elsevier, vol. 284(C).
- Zhu, Dafeng & Yang, Bo & Liu, Qi & Ma, Kai & Zhu, Shanying & Ma, Chengbin & Guan, Xinping, 2020. "Energy trading in microgrids for synergies among electricity, hydrogen and heat networks," Applied Energy, Elsevier, vol. 272(C).
- Mehr, A.S. & Lanzini, A. & Santarelli, M. & Rosen, Marc A., 2021. "Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches," Energy, Elsevier, vol. 228(C).
- Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
- Wu, Zhen & Zhu, Pengfei & Yao, Jing & Tan, Peng & Xu, Haoran & Chen, Bin & Yang, Fusheng & Zhang, Zaoxiao & Ni, Meng, 2020. "Thermo-economic modeling and analysis of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for stationary electricity power generation," Energy, Elsevier, vol. 192(C).
- Alavi, Farid & Park Lee, Esther & van de Wouw, Nathan & De Schutter, Bart & Lukszo, Zofia, 2017. "Fuel cell cars in a microgrid for synergies between hydrogen and electricity networks," Applied Energy, Elsevier, vol. 192(C), pages 296-304.
- Abdellah Essaghouri & Zezhi Zeng & Bingguo Zhao & Changkun Hao & Yuping Qian & Weilin Zhuge & Yangjun Zhang, 2022. "Influence of Radial Flows on Power Density and Gas Stream Pressure Drop of Tubular Solid Oxide Fuel Cells," Energies, MDPI, vol. 15(21), pages 1-21, October.
- Dimitrova, Zlatina & Maréchal, François, 2017. "Environomic design for electric vehicles with an integrated solid oxide fuel cell (SOFC) unit as a range extender," Renewable Energy, Elsevier, vol. 112(C), pages 124-142.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Heilmann, C. & Friedl, G., 2021. "Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications—A review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
- Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2016. "Vehicle to Grid regulation services of electric delivery trucks: Economic and environmental benefit analysis," Applied Energy, Elsevier, vol. 170(C), pages 161-175.
- Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2017. "Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology," Energy, Elsevier, vol. 120(C), pages 608-618.
- Hoogvliet, T.W. & Litjens, G.B.M.A. & van Sark, W.G.J.H.M., 2017. "Provision of regulating- and reserve power by electric vehicle owners in the Dutch market," Applied Energy, Elsevier, vol. 190(C), pages 1008-1019.
- Falcão, Eduardo Aparecido Moreira & Teixeira, Ana Carolina Rodrigues & Sodré, José Ricardo, 2017. "Analysis of CO2 emissions and techno-economic feasibility of an electric commercial vehicle," Applied Energy, Elsevier, vol. 193(C), pages 297-307.
- Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Popović Vlado & Jereb Borut & Kilibarda Milorad & Andrejić Milan & Keshavarzsaleh Abolfazl & Dragan Dejan, 2018. "Electric Vehicles as Electricity Storages in Electric Power Systems," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 9(2), pages 57-72, October.
- Robledo, Carla B. & Oldenbroek, Vincent & Abbruzzese, Francesca & van Wijk, Ad J.M., 2018. "Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building," Applied Energy, Elsevier, vol. 215(C), pages 615-629.
- Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
- George Baure & Matthieu Dubarry, 2020. "Durability and Reliability of EV Batteries under Electric Utility Grid Operations: Impact of Frequency Regulation Usage on Cell Degradation," Energies, MDPI, vol. 13(10), pages 1-11, May.
- Godina, Radu & Rodrigues, Eduardo M.G. & Matias, João C.O. & Catalão, João P.S., 2016. "Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer," Applied Energy, Elsevier, vol. 178(C), pages 29-42.
- Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
- Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
- Liao, Zitong & Taiebat, Morteza & Xu, Ming, 2021. "Shared autonomous electric vehicle fleets with vehicle-to-grid capability: Economic viability and environmental co-benefits," Applied Energy, Elsevier, vol. 302(C).
- Liu, Junbei & Zhuge, Chengxiang & Tang, Justin Hayse Chiwing G. & Meng, Meng & Zhang, Jie, 2022. "A spatial agent-based joint model of electric vehicle and vehicle-to-grid adoption: A case of Beijing," Applied Energy, Elsevier, vol. 310(C).
- Williams, Brett D, 2010. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management," University of California Transportation Center, Working Papers qt15f9495j, University of California Transportation Center.
- Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
- Lipman, Timothy & Kammen, Daniel & Ogden, Joan & Sperling, Dan, 2004. "An Integrated Hydrogen Vision for California," Institute of Transportation Studies, Working Paper Series qt931583w4, Institute of Transportation Studies, UC Davis.
- Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt4kv151dp, Institute of Transportation Studies, UC Davis.
More about this item
Keywords
SOFC; Reforming; Vehicle-to-grid (V2G); Exergy; Trigeneration;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:173:y:2016:i:c:p:13-28. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.