IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7875-d951523.html
   My bibliography  Save this article

Influence of Radial Flows on Power Density and Gas Stream Pressure Drop of Tubular Solid Oxide Fuel Cells

Author

Listed:
  • Abdellah Essaghouri

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
    These authors contributed equally to this work.)

  • Zezhi Zeng

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
    These authors contributed equally to this work.)

  • Bingguo Zhao

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Changkun Hao

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Yuping Qian

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Weilin Zhuge

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Yangjun Zhang

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

Abstract

The development of solid oxide fuel cells (SOFCs) for powering vehicles requires high power densities. The radial flows generated by the insert structures in SOFC fuel channels could improve the power density by facilitating the fuel to enter the porous anode for electrochemical reactions. In this paper, we developed a 2D axisymmetric numerical model to examine the influence of a convergent conical ring insert on the flow and mass transfer characteristics in a tubular SOFC. The mass transfer conductance of fuel was analyzed and proposed to quantify the performance of different insert designs. The effects of the radius and offset angle of the convergent conical ring insert were examined and analyzed. We demonstrate that increasing the insert radius could increase the fuel mass transfer conductance and effectively improve the net output power of the tubular SOFC by 12% while the offset angle of the inserts exhibits a negligible impact on the fuel mass transfer conductance. Increasing the offset angle could help reduce the gas-phase pressure drop in fuel channels by 42%. The present study helps improve our understanding of the relationship between fuel mass transfer conductance and electrochemical reactions. It also proposes channel design methods based on mass transfer conductance for high-power-density solid oxide fuel cells.

Suggested Citation

  • Abdellah Essaghouri & Zezhi Zeng & Bingguo Zhao & Changkun Hao & Yuping Qian & Weilin Zhuge & Yangjun Zhang, 2022. "Influence of Radial Flows on Power Density and Gas Stream Pressure Drop of Tubular Solid Oxide Fuel Cells," Energies, MDPI, vol. 15(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7875-:d:951523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernandes, A. & Woudstra, T. & van Wijk, A. & Verhoef, L. & Aravind, P.V., 2016. "Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: An exergy analysis of different system designs," Applied Energy, Elsevier, vol. 173(C), pages 13-28.
    2. Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
    3. Abdellah Essaghouri & Zezhi Zeng & Bingguo Zhao & Changkun Hao & Yuping Qian & Weilin Zhuge & Yangjun Zhang, 2022. "Effects of Radial and Circumferential Flows on Power Density Improvements of Tubular Solid Oxide Fuel Cells," Energies, MDPI, vol. 15(19), pages 1-21, September.
    4. Chen, Bin & Xu, Haoran & Ni, Meng, 2017. "Modelling of SOEC-FT reactor: Pressure effects on methanation process," Applied Energy, Elsevier, vol. 185(P1), pages 814-824.
    5. Khazaee, I. & Rava, A., 2017. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries," Energy, Elsevier, vol. 119(C), pages 235-244.
    6. Chen, Bin & Xu, Haoran & Tan, Peng & Zhang, Yuan & Xu, Xiaoming & Cai, Weizi & Chen, Meina & Ni, Meng, 2019. "Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells," Applied Energy, Elsevier, vol. 237(C), pages 476-486.
    7. Wei, S.-S. & Wang, T.-H. & Wu, J.-S., 2014. "Numerical modeling of interconnect flow channel design and thermal stress analysis of a planar anode-supported solid oxide fuel cell stack," Energy, Elsevier, vol. 69(C), pages 553-561.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdellah Essaghouri & Zezhi Zeng & Bingguo Zhao & Changkun Hao & Yuping Qian & Weilin Zhuge & Yangjun Zhang, 2022. "Effects of Radial and Circumferential Flows on Power Density Improvements of Tubular Solid Oxide Fuel Cells," Energies, MDPI, vol. 15(19), pages 1-21, September.
    2. Gong, Chengyuan & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel flow field design with flow re-distribution for advanced thermal management in Solid oxide fuel cell," Applied Energy, Elsevier, vol. 331(C).
    3. Zhen Zhang & Chengzhi Guan & Leidong Xie & Jian-Qiang Wang, 2022. "Design and Analysis of a Novel Opposite Trapezoidal Flow Channel for Solid Oxide Electrolysis Cell Stack," Energies, MDPI, vol. 16(1), pages 1-11, December.
    4. Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
    5. Promsen, Mungmuang & Komatsu, Yosuke & Sciazko, Anna & Kaneko, Shozo & Shikazono, Naoki, 2020. "Feasibility study on saturated water cooled solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 279(C).
    6. Wu, Zhen & Tan, Peng & Chen, Bin & Cai, Weizi & Chen, Meina & Xu, Xiaoming & Zhang, Zaoxiao & Ni, Meng, 2019. "Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK," Energy, Elsevier, vol. 175(C), pages 567-579.
    7. Wang, Chen & He, Qijiao & Li, Zheng & Yu, Jie & Bello, Idris Temitope & Zheng, Keqing & Han, Minfang & Ni, Meng, 2024. "A novel in-tube reformer for solid oxide fuel cell for performance improvement and efficient thermal management: A numerical study based on artificial neural network and genetic algorithm," Applied Energy, Elsevier, vol. 357(C).
    8. Promsen, Mungmuang & Komatsu, Yosuke & Sciazko, Anna & Kaneko, Shozo & Shikazono, Naoki, 2023. "Power maximization and load range extension of solid oxide fuel cell operation by water cooling," Energy, Elsevier, vol. 276(C).
    9. Wang, Chao & Liao, Mingzheng & Liang, Bo & Jiang, Zhiqiang & Zhong, Weilin & Chen, Ying & Luo, Xianglong & Shu, Riyang & Tian, Zhipeng & Lei, Libin, 2021. "Enhancement effect of catalyst support on indirect hydrogen production from propane partial oxidation towards commercial solid oxide fuel cell (SOFC) applications," Applied Energy, Elsevier, vol. 288(C).
    10. Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
    11. Chen, Bin & Xu, Haoran & Tan, Peng & Zhang, Yuan & Xu, Xiaoming & Cai, Weizi & Chen, Meina & Ni, Meng, 2019. "Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells," Applied Energy, Elsevier, vol. 237(C), pages 476-486.
    12. Liang, Bo & Yao, Yue & Guo, Jin & Yang, Huazheng & Liang, Jiajiang & Zhao, Zhijiang & Wu, Gang & Zhan, Yuedong & Zhao, Xiaobo & Tao, Tao & Yao, Yingbang & Lu, Shengguo & Ruirui, Zhao, 2022. "Propane-fuelled microtubular solid oxide fuel cell stack electrically connected by an anodic rectangular window," Applied Energy, Elsevier, vol. 309(C).
    13. Karol K. Śreniawski & Maciej Chalusiak & Marcin Moździerz & Janusz S. Szmyd & Grzegorz Brus, 2023. "Transport Phenomena in a Banded Solid Oxide Fuel Cell Stack—Part 1: Model and Validation," Energies, MDPI, vol. 16(11), pages 1-25, June.
    14. Zhao, Lei & Yuan, Hao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Tang, Wei & Ming, Pingwen & Dai, Haifeng, 2023. "Inconsistency evaluation of vehicle-oriented fuel cell stacks based on electrochemical impedance under dynamic operating conditions," Energy, Elsevier, vol. 265(C).
    15. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Meng, Xin & Deng, Bohao & Wu, Weifeng & Zhao, Pan, 2023. "Thermodynamic analysis of a novel combined heating and power system based on low temperature solid oxide fuel cell (LT-SOFC) and high temperature proton exchange membrane fuel cell (HT-PEMFC)," Energy, Elsevier, vol. 284(C).
    16. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    17. Chen, Yanbo & Luo, Yu & Shi, Yixiang & Cai, Ningsheng, 2020. "Theoretical modeling of a pressurized tubular reversible solid oxide cell for methane production by co-electrolysis," Applied Energy, Elsevier, vol. 268(C).
    18. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).
    19. Khazaee, I. & Rava, A., 2017. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries," Energy, Elsevier, vol. 119(C), pages 235-244.
    20. Karol K. Śreniawski & Marcin Moździerz & Grzegorz Brus & Janusz S. Szmyd, 2023. "Transport Phenomena in a Banded Solid Oxide Fuel Cell Stack—Part 2: Numerical Analysis," Energies, MDPI, vol. 16(11), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7875-:d:951523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.